4.Role of Toll-like receptors in persistent infection of cervical high-risk human papillomavirus based on "latent pathogen theory".
Dan-Dan HONG ; Ting-Ting SHANG ; Hong-Yu GUO ; Wen-Ting ZUO ; Rui SUN ; Wen-Wen XU ; Qing-Ling REN
China Journal of Chinese Materia Medica 2025;50(7):1974-1979
Persistent infection with high-risk human papillomavirus(HR-HPV) is the primary etiological factor in cervical lesions and cervical cancer. Toll-like receptors(TLRs), as important pattern recognition receptors of the innate immune system, play a key role in the persistence of cervical HR-HPV infection. The "latent pathogen theory" in traditional Chinese medicine(TCM) holds that latent pathogens have both "latent" and "triggered" characteristics, which closely resemble the persistent infection and latent pathogenic potential of cervical HR-HPV. Guided by the "latent pathogen theory" and using contemporary immunological techniques, this paper explores the bidirectional immunomodulatory effects of TLRs in the persistence of cervical HR-HPV infection and their relationship with latent pathogens. The results indicate that TLRs play a crucial role in immune recognition and modulation. Dysregulation and overactivation of TLRs can induce chronic inflammation, allowing cervical HR-HPV to persist and evade immune detection. TLR dysfunction, coupled with a deficiency in healthy Qi that prevents the expulsion of pathogens, is a critical factor in the pathogenicity of latent pathogens. Restoring healthy Qi to modulate the immune functions of TLRs emerges as an important strategy for clearing cervical HR-HPV infection. By harmonizing the spleen and kidney and regulating immune balance, it is possible to reverse cervical HR-HPV infection, providing a scientific basis for clinical research.
Humans
;
Toll-Like Receptors/genetics*
;
Female
;
Papillomavirus Infections/genetics*
;
Papillomaviridae/immunology*
;
Persistent Infection/genetics*
;
Uterine Cervical Neoplasms/immunology*
;
Animals
;
Medicine, Chinese Traditional
;
Cervix Uteri/immunology*
;
Human Papillomavirus Viruses
5.Dehydrodiisoeugenol resists H1N1 virus infection via TFEB/autophagy-lysosome pathway.
Zhe LIU ; Jun-Liang LI ; Yi-Xiang ZHOU ; Xia LIU ; Yan-Li YU ; Zheng LUO ; Yao WANG ; Xin JIA
China Journal of Chinese Materia Medica 2025;50(6):1650-1658
The present study delves into the cellular mechanisms underlying the antiviral effects of dehydrodiisoeugenol(DEH) by focusing on the transcription factor EB(TFEB)/autophagy-lysosome pathway. The cell counting kit-8(CCK-8) was utilized to assess the impact of DEH on the viability of human non-small cell lung cancer cells(A549). The inhibitory effect of DEH on the replication of influenza A virus(H1N1) was determined by real-time quantitative polymerase chain reaction(RT-qPCR). Western blot was employed to evaluate the influence of DEH on the expression level of the H1N1 virus nucleoprotein(NP). The effect of DEH on the fluorescence intensity of NP was examined by the immunofluorescence assay. A mouse model of H1N1 virus infection was established via nasal inhalation to evaluate the therapeutic efficacy of 30 mg·kg~(-1) DEH on H1N1 virus infection. RNA sequencing(RNA-seq) was performed for the transcriptional profiling of mouse embryonic fibroblasts(MEFs) in response to DEH. The fluorescent protein-tagged microtubule-associated protein 1 light chain 3(LC3) was used to assess the autophagy induced by DEH. Western blot was employed to determine the effect of DEH on the autophagy flux of LC3Ⅱ/LC3Ⅰ under viral infection conditions. Lastly, the role of TFEB expression in the inhibition of DEH against H1N1 infection was evaluated in immortalized bone marrow-derived macrophage(iBMDM), both wild-type and TFEB knockout. The results revealed that the half-maximal inhibitory concentration(IC_(50)) of DEH for A549 cells was(87.17±0.247)μmol·L~(-1), and DEH inhibited H1N1 virus replication in a dose-dependent manner in vitro. Compared with the H1N1 virus-infected mouse model, the treatment with DEH significantly improved the body weights and survival time of mice. DEH induced LC3 aggregation, and the absence of TFEB expression in iBMDM markedly limited the ability of DEH to counteract H1N1 virus replication. In conclusion, DEH exerts its inhibitory activity against H1N1 infection by activating the TFEB/autophagy-lysosome pathway.
Influenza A Virus, H1N1 Subtype/genetics*
;
Animals
;
Autophagy/drug effects*
;
Humans
;
Mice
;
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics*
;
Influenza, Human/metabolism*
;
Lysosomes/metabolism*
;
Orthomyxoviridae Infections/genetics*
;
Eugenol/pharmacology*
;
Antiviral Agents/pharmacology*
;
Virus Replication/drug effects*
;
A549 Cells
;
Male
6.Adar3 promotes macrophage M2 polarization and alleviates viral myocarditis by activating the Wnt/β-catenin signaling pathway.
Mengying ZHANG ; Zhi LI ; Weiya PEI ; Shujun WAN ; Xueqin LI ; Kun LYU ; Xiaolong ZHU
Chinese Journal of Cellular and Molecular Immunology 2025;41(9):769-777
Objective To investigate the role and mechanism of RNA-Specific adenosine deaminase 3 (Adar3) in regulating macrophage polarization during Coxsackievirus B3(CVB3)-induced viral myocarditis (VM). Methods Bone marrow-derived macrophages (BMDM) from mice were cultured in vitro and induced into M1/M2 macrophages using interferon-gamma (IFN-γ)/lipopolysaccharide (LPS) or interleukin 4 (IL-4), respectively. The mRNA expression levels of Adar1, Adar2, and Adar3 in each group of cells were assessed by real-time quantitative PCR (qRT-PCR). Specific siRNAs targeting the Adar3 gene were designed, synthesized, and transiently transfected into M2 macrophages. The mRNA levels of M2 polarization-related marker genes-including arginase 1 (Arg1), chitinase 3-like molecule 3 (YM1/Chi3l3), and resistin-like molecule alpha (RELMα/FIZZ1)-were detected by qRT-PCR. RNA sequencing was performed to analyze the signaling pathways affected by Adar3. The expression levels of Wnt/β-catenin signaling pathway were further validated using qRT-PCR and Western blot. The adeno-associated virus overexpressing Adar3 was designed, synthesized, and injected into mice via tail vein. Three weeks later, a myocarditis mouse model was established. After an additional week, the phenotype and function of cardiac macrophages, as well as multiple indicators of VM (including echocardiography, body weight, histopathology and serology) were examined. Additionally, the protein levels of the Wnt/β-catenin signaling pathway were assessed. Results Compared to M0-type macrophages, the expression level of Adar3 was significantly increased in M2-type macrophages. After transfection of Adar3 siRNA, the mRNA levels of Arg1, YM1 and FIZZ1 in M2 macrophages were downregulated. RNA sequencing revealed 149 upregulated genes and 349 downregulated genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and subsequent validation experiments indicated that Adar3 modulated the Wnt/β-catenin signaling pathway. In vivo experiments demonstrated that Adar3 overexpression alleviated the cardiac dysfunction of VM mice. The proportion of M1 macrophages in the heart decreased, while the proportion of M2 macrophages increased. At the same time, the Adar3 overexpression activated the Wnt/β-catenin signaling pathway. Conclusion Adar3 promotes macrophage polarization toward the M2 phenotype by activating the Wnt/β-catenin signaling pathway, thereby alleviating VM.
Animals
;
Adenosine Deaminase/metabolism*
;
Macrophages/immunology*
;
Wnt Signaling Pathway/genetics*
;
Myocarditis/immunology*
;
Mice
;
Coxsackievirus Infections/metabolism*
;
Male
;
Mice, Inbred BALB C
;
Enterovirus B, Human/physiology*
;
beta Catenin/genetics*
7.Effects of ROCK-siRNA transfection on Ang II-induced endothelial cell senescence and endothelial microparticles.
Kai WANG ; Yan WANG ; Tianqi CHEN ; Fang PENG ; Hui ZHOU ; Qin SHI
Chinese Journal of Cellular and Molecular Immunology 2025;41(9):778-783
Objective To investigate the effects of ROCK-siRNA transfection on endothelial cell senescence and endothelial microparticles (EMPs) induced by angiotensin II (Ang II). Methods Human umbilical vein endothelial cells (HUVECs) were treated with Ang II (1.0 μmo/L) to induce cellular senescence models, followed by transfection with ROCK-siRNA. The cells were divided into four groups: control group, model group, negative transfection control group (Ang II combined with NC-siRNA), and ROCK-siRNA transfection group (Ang II combined with ROCK-siRNA). Cellular senescence was assessed by SA-β-Gal staining. EMP levels in cell supernatants and intracellular reactive oxygen species (ROS) levels were assessed using flow cytometry. The expression levels of silenced information regulator 1(SIRT1) and p53 protein in each group were analyzed by Western blotting. Results Following ROCK-siRNA transfection, the number of senescent cells induced by Ang II was significantly reduced, accompanied by decreased CD31+ EMP levels and suppressed intracellular ROS levels. Meanwhile, the expression levels of SIRT1 were up-regulated, while the expression levels of p53 were down-regulated. Conclusion Silencing ROCK expression suppresses EMP release, reduces ROS generation, regulates the expression of SIRT1 and p53, and ultimately attenuates Ang II-induced endothelial cell senescence.
Humans
;
Angiotensin II/pharmacology*
;
Cellular Senescence/genetics*
;
Human Umbilical Vein Endothelial Cells/cytology*
;
RNA, Small Interfering/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Sirtuin 1/genetics*
;
Transfection
;
Tumor Suppressor Protein p53/genetics*
;
Cell-Derived Microparticles/drug effects*
;
rho-Associated Kinases/metabolism*
;
Endothelial Cells/metabolism*
;
Cells, Cultured
8.Mechanism by which KLF9 regulates IFN-β expression in macrophages.
Xiurui YAN ; Zhaoqing GUAN ; Jianli SONG ; Yaolin ZHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(10):882-887
Objective To investigate the role and mechanism of the zinc finger protein Kruppel-like transcription factor 9 (KLF9) in the stimulation of type I interferon expression induced by herpes simplex virus type 1 (HSV-1) in macrophages. Methods Agarose Gel electrophoresis, quantitative real-time PCR (qRT-PCR) and western blot analyses were employed to detect the KLF9 relative expression in bone marrow-derived macrophages (BMDMs) from Klf9-/- (gKO) mice and wild-type (WT) mice. RNA-seq analysis was utilized to identify the potential targeted genes upon HSV-1 stimulation in BMDMs. ELISA was used to measure the potent of IFN-β in the supernatant of BMDMs derived from gKO and WT mice after HSV-1 stimulation. qRT-PCR analysis was employed to further confirm the changes of Ifnb1 and interferon-stimulated gene (ISG) such as interferon-induced protein with tetratricopeptide repeats 1 (Ifit1), interferon-stimulated exonuclease gene 20 (Isg20), cholesterol 25-hydroxylase (Ch25h) and 2'-5' oligoadenylate synthetase-like 1 (Oasl1). Western blot was used to detect the expression of phosphorylated interferon regulatory factor-3 (p-IRF3), IRF3, phosphorylated interferon regulatory factor-7 (p-IRF7), IRF7, phosphorylated nuclear factor-kappa B p65 (p-NF-κB p65) and NF-κB p65. CUT-Tag and ChIP-qPCR assay were utilized to confirm the binding region of KLF9 in Ifnb1. Results The KLF9 expression was significantly decreased in BMDMs from gKO mice compared with that from WT mice. The RNA-seq analysis showed that Klf9 deletion in BMDMs resulted in an impaired type I interferon signaling pathway. The qRT-PCR analysis revealed that Klf9 deletion in BMDMs led to a significant decrease of Ifnb1 and ISG such as Ifit1, Ch25h and Oasl1 except Isg20. Moreover, ELISA revealed that Klf9 knockout in BMDMs resulted in a significant decrease of IFN-β secreted from BMDMs. Mechanistically, KLF9 directly binds to the promoter of Ifnb1. Conclusion KLF9 is essential for macrophages to resist HSV-1 infection.
Animals
;
Kruppel-Like Transcription Factors/physiology*
;
Interferon-beta/metabolism*
;
Macrophages/virology*
;
Mice
;
Herpesvirus 1, Human/physiology*
;
Mice, Knockout
;
Signal Transduction
;
Mice, Inbred C57BL
;
Interferon Regulatory Factor-3/genetics*
;
Interferon Regulatory Factor-7/genetics*
;
Gene Expression Regulation
9.Impact of human papillomavirus and coinfection with other sexually transmitted pathogens on male infertility.
Xin FAN ; Ya XU ; Li-Feng XIANG ; Lu-Ping LIU ; Jin-Xiu WAN ; Qiu-Ting DUAN ; Zi-Qin DIAN ; Yi SUN ; Ze WU ; Yun-Hua DONG
Asian Journal of Andrology 2025;27(1):84-89
This study primarily aimed to investigate the prevalence of human papillomavirus (HPV) and other common pathogens of sexually transmitted infections (STIs) in spermatozoa of infertile men and their effects on semen parameters. These pathogens included Ureaplasma urealyticum, Ureaplasma parvum, Chlamydia trachomatis, Mycoplasma genitalium , herpes simplex virus 2, Neisseria gonorrhoeae, Enterococcus faecalis, Streptococcus agalactiae, Pseudomonas aeruginosa , and Staphylococcus aureus . A total of 1951 men of infertile couples were recruited between 23 March 2023, and 17 May 2023, at the Department of Reproductive Medicine of The First People's Hospital of Yunnan Province (Kunming, China). Multiplex polymerase chain reaction and capillary electrophoresis were used for HPV genotyping. Polymerase chain reaction and electrophoresis were also used to detect the presence of other STIs. The overall prevalence of HPV infection was 12.4%. The top five prevalent HPV subtypes were types 56, 52, 43, 16, and 53 among those tested positive for HPV. Other common infections with high prevalence rates were Ureaplasma urealyticum (28.3%), Ureaplasma parvum (20.4%), and Enterococcus faecalis (9.5%). The prevalence rates of HPV coinfection with Ureaplasma urealyticum, Ureaplasma parvum, Chlamydia trachomatis, Mycoplasma genitalium , herpes simplex virus 2, Neisseria gonorrhoeae, Enterococcus faecalis, Streptococcus agalactiae , and Staphylococcus aureus were 24.8%, 25.4%, 10.6%, 6.4%, 2.4%, 7.9%, 5.9%, 0.9%, and 1.3%, respectively. The semen volume and total sperm count were greatly decreased by HPV infection alone. Coinfection with HPV and Ureaplasma urealyticum significantly reduced sperm motility and viability. Our study shows that coinfection with STIs is highly prevalent in the semen of infertile men and that coinfection with pathogens can seriously affect semen parameters, emphasizing the necessity of semen screening for STIs.
Humans
;
Male
;
Infertility, Male/epidemiology*
;
Coinfection/microbiology*
;
Papillomavirus Infections/virology*
;
Adult
;
Sexually Transmitted Diseases/complications*
;
China/epidemiology*
;
Staphylococcus aureus/isolation & purification*
;
Chlamydia trachomatis/isolation & purification*
;
Prevalence
;
Mycoplasma genitalium/isolation & purification*
;
Ureaplasma urealyticum/isolation & purification*
;
Neisseria gonorrhoeae/isolation & purification*
;
Enterococcus faecalis/isolation & purification*
;
Streptococcus agalactiae/isolation & purification*
;
Herpesvirus 2, Human/genetics*
;
Pseudomonas aeruginosa/isolation & purification*
;
Semen/virology*
;
Sperm Motility
;
Spermatozoa/microbiology*
;
Human Papillomavirus Viruses
10.Study on the influence of the sY1192 gene locus in the AZFb/c region on sperm quality and pregnancy outcome.
Gang-Xin CHEN ; Yan SUN ; Rui YANG ; Zhi-Qing HUANG ; Hai-Yan LI ; Bei-Hong ZHENG
Asian Journal of Andrology 2025;27(2):231-238
Y chromosome microdeletions are an important cause of male infertility. At present, research on the Y chromosome is mainly focused on analyzing the loss of large segments of the azoospermia factor a/b/c (AZFa/b/c) gene, and few studies have reported the impact of unit point deletion in the AZF band on fertility. This study analyzed the effect of sperm quality after sY1192 loss in 116 patients. The sY1192-independent deletion accounted for 41.4% (48/116). Eight patterns were found in the deletions associated with sY1192. The rate of sperm detection was similar in the semen of patients with the independent sY1192 deletion and the combined sY1192 deletions (52.1% vs 50.0%). The patients with only sY1192 gene loss had a higher probability of sperm detection than the patients whose sY1192 gene locus existed, but other gene loci were lost (52.1% vs 32.0%). The hormone levels were similar in patients with sY1192 deletion alone and in those with sY1192 deletion and other types of microdeletions in the presence of the sY1192 locus. After multiple intracytoplasmic sperm injection (ICSI) attempts, the pregnancy rate of spouses of men with sY1192-independent deletions was similar to that of other types of microdeletions, but the fertilization and cleavage rates were higher. We observed that eight deletion patterns were observed for sY1192 microdeletions of AZFb/c, dominated by the independent deletion of sY1192. After ICSI, the fertilization rate and cleavage rate of the sY1192-independent microdeletion were higher than those of other Y chromosome microdeletion types, but there was no significant difference in pregnancy outcomes.
Humans
;
Female
;
Pregnancy
;
Male
;
Chromosomes, Human, Y/genetics*
;
Adult
;
Chromosome Deletion
;
Pregnancy Outcome/genetics*
;
Infertility, Male/genetics*
;
Spermatozoa/physiology*
;
Semen Analysis
;
Sex Chromosome Disorders of Sex Development/genetics*
;
Sperm Injections, Intracytoplasmic
;
Azoospermia/genetics*
;
Sex Chromosome Aberrations


Result Analysis
Print
Save
E-mail