1.Dual-responsive supramolecular photodynamic nanomedicine with activatable immunomodulation for enhanced antitumor therapy.
Siqin HE ; Lulu WANG ; Dongxu WU ; Fan TONG ; Huan ZHAO ; Hanmei LI ; Tao GONG ; Huile GAO ; Yang ZHOU
Acta Pharmaceutica Sinica B 2024;14(2):765-780
A major challenge facing photodynamic therapy (PDT) is that the activity of the immune-induced infiltrating CD8+ T cells is subject to the regulatory T lymphocytes (Tregs), leaving the tumor at risk of recurrence and metastasis after the initial ablation. To augment the antitumor response and reprogram the immunosuppressive tumor microenvironment (TME), a supramolecular photodynamic nanoparticle (DACss) is constructed by the host-guest interaction between demethylcantharidin-conjugated β-cyclodextrin (DMC-CD) and amantadine-terminated disulfide-conjugated FFVLGGGC peptide with chlorin e6 decoration (Ad-ss-pep-Ce6) to achieve intelligent delivery of photosensitizer and immunomodulator for breast cancer treatment. The acid-labile β-carboxamide bond of DMC-CD is hydrolyzed in response to the acidic TME, resulting in the localized release of DMC and subsequent inhibition of Tregs. The guest molecule Ad-ss-pep-Ce6 can be cleaved by a high level of intracellular GSH, reducing photosensitizer toxicity and increasing photosensitizer retention in the tumor. With a significant increase in the CTL/Treg ratio, the combination of Ce6-based PDT and DMC-mediated immunomodulation adequately achieved spatiotemporal regulation and remodeling of the TME, as well as improved primary tumor and in situ lung metastasis suppression with the aid of PD-1 antibody.
2.Hollow copper sulfide nanoparticles carrying ISRIB for the sensitized photothermal therapy of breast cancer and brain metastases through inhibiting stress granule formation and reprogramming tumor-associated macrophages.
Fan TONG ; Haili HU ; Yanyan XU ; Yang ZHOU ; Rou XIE ; Ting LEI ; Yufan DU ; Wenqin YANG ; Siqin HE ; Yuan HUANG ; Tao GONG ; Huile GAO
Acta Pharmaceutica Sinica B 2023;13(8):3471-3488
As known, the benefits of photothermal therapy (PTT) are greatly limited by the heat tolerance of cancer cells resulting from overexpressed heat shock proteins (HSPs). Then HSPs further trigger the formation of stress granules (SGs) that regulate protein expression and cell viability under various stress conditions. Inhibition of SG formation can sensitize tumor cells to PTT. Herein, we developed PEGylated pH (low) insertion peptide (PEG-pHLIP)-modified hollow copper sulfide nanoparticles (HCuS NPs) encapsulating the SG inhibitor ISRIB, with the phase-change material lauric acid (LA) as a gate-keeper, to construct a pH-driven and NIR photo-responsive controlled smart drug delivery system (IL@H-PP). The nanomedicine could specifically target slightly acidic tumor sites. Upon irradiation, IL@H-PP realized PTT, and the light-controlled release of ISRIB could effectively inhibit the formation of PTT-induced SG to sensitize tumor cells to PTT, thereby increasing the antitumor effect and inducing potent immunogenic cell death (ICD). Moreover, IL@H-PP could promote the production of reactive oxygen species (ROS) by tumor-associated macrophages (TAMs), repolarizing them towards the M1 phenotype and remodeling the immunosuppressive microenvironment. In vitro/vivo results revealed the potential of PTT combined with SG inhibitors, which provides a new paradigm for antitumor and anti-metastases.
3.Sequential delivery of PD-1/PD-L1 blockade peptide and IDO inhibitor for immunosuppressive microenvironment remodeling via an MMP-2 responsive dual-targeting liposome.
Chuan HU ; Yujun SONG ; Yiwei ZHANG ; Siqin HE ; Xueying LIU ; Xiaotong YANG ; Tao GONG ; Yuan HUANG ; Huile GAO
Acta Pharmaceutica Sinica B 2023;13(5):2176-2187
Intelligent responsive drug delivery system opens up new avenues for realizing safer and more effective combination immunotherapy. Herein, a kind of tumor cascade-targeted responsive liposome (NLG919@Lip-pep1) is developed by conjugating polypeptide inhibitor of PD-1 signal pathway (AUNP-12), which is also a targeted peptide that conjugated with liposome carrier through matrix metalloproteinase-2 (MMP-2) cleavable peptide (GPLGVRGD). This targeted liposome is prepared through a mature preparation process, and indoleamine-2,3-dioxygenase (IDO) inhibitor NLG919 was encapsulated into it. Moreover, mediated by the enhanced permeability and retention effect (EPR effect) and AUNP-12, NLG919@Lip-pep1 first targets the cells that highly express PD-L1 in tumor tissues. At the same time, the over-expressed MMP-2 in the tumor site triggers the dissociation of AUNP-12, thus realizing the precise block of PD-1 signal pathway, and restoring the activity of T cells. The exposure of secondary targeting module II VRGDC-NLG919@Lip mediated tumor cells targeting, and further relieved the immunosuppressive microenvironment. Overall, this study offers a potentially appealing paradigm of a high efficiency, low toxicity, and simple intelligent responsive drug delivery system for targeted drug delivery in breast cancer, which can effectively rescue and activate the body's anti-tumor immune response and furthermore achieve effective treatment of metastatic breast cancer.
4.Erratum: Author correction to "A nanocleaner specifically penetrates the blood‒brain barrier at lesions to clean toxic proteins and regulate inflammation in Alzheimer's disease" Acta Pharmaceutica Sinica B 12, (2021) 4032-4044.
Ting LEI ; Zhihang YANG ; Xue XIA ; Yuxiu CHEN ; Xiaotong YANG ; Rou XIE ; Fan TONG ; Xiaolin WANG ; Huile GAO
Acta Pharmaceutica Sinica B 2022;12(6):2965-2967
[This corrects the article DOI: 10.1016/j.apsb.2021.04.022.].
5.Co-delivery of photosensitizer and diclofenac through sequentially responsive bilirubin nanocarriers for combating hypoxic tumors.
Yang ZHOU ; Fan TONG ; Weilong GU ; Siqin HE ; Xiaotong YANG ; Jiamei LI ; Yue-Dong GAO ; Huile GAO
Acta Pharmaceutica Sinica B 2022;12(3):1416-1431
Considering that photodynamic therapy (PDT)-induced oxygen consumption and microvascular damage could exacerbate hypoxia to drive more glycolysis and angiogenesis, a novel approach to potentiate PDT and overcome the resistances of hypoxia is avidly needed. Herein, morpholine-modified PEGylated bilirubin was proposed to co-deliver chlorin e6, a photosensitizer, and diclofenac (Dc). In acidic milieu, the presence of morpholine could enable the nanocarriers to selectively accumulate in tumor cells, while PDT-generated reactive oxidative species (ROS) resulted in the collapse of bilirubin nanoparticles and rapid release of Dc. Combining with Dc showed a higher rate of apoptosis over PDT alone and simultaneously triggered a domino effect, including blocking the activity and expression of lactate dehydrogenase A (LDHA), interfering with lactate secretion, suppressing the activation of various angiogenic factors and thus obviating hypoxia-induced resistance-glycolysis and angiogenesis. In addition, inhibition of hypoxia-inducible factor-1α (HIF-1α) by Dc alleviated hypoxia-induced resistance. This study offered a sequentially responsive platform to achieve sufficient tumor enrichment, on-demand drug release and superior anti-tumor outcomes in vitro and in vivo.
6.Dual-responsive nanoparticles with transformable shape and reversible charge for amplified chemo-photodynamic therapy of breast cancer.
Wenfeng JIA ; Rui LIU ; Yushan WANG ; Chuan HU ; Wenqi YU ; Yang ZHOU ; Ling WANG ; Mengjiao ZHANG ; Huile GAO ; Xiang GAO
Acta Pharmaceutica Sinica B 2022;12(8):3354-3366
Herein, we designed a dual-response shape transformation and charge reversal strategy with chemo-photodynamic therapy to improve the blood circulation time, tumor penetration and retention, which finally enhanced the anti-tumor effect. In the system, hydrophobic photosensitizer chlorin e6 (Ce6), hydrophilic chemotherapeutic drug berberrubine (BBR) and matrix metalloproteinase-2 (MMP-2) response peptide (PLGVRKLVFF) were coupled by linkers to form a linear triblock molecule BBR-PLGVRKLVFF-Ce6 (BPC), which can self-assemble into nanoparticles. Then, positively charged BPC and polyethylene glycol-histidine (PEG-His) were mixed to form PEG-His@BPC with negative surface charge and long blood circulation time. Due to the acidic tumor microenvironment, the PEG shell was detached from PEG-His@BPC attributing to protonation of the histidine, which achieved charge reversal, size reduction and enhanced tumor penetration. At the same time, enzyme cutting site was exposed, and the spherical nanoparticles could transform into nanofibers following the enzymolysis by MMP-2, while BBR was released to kill tumors by inducing apoptosis. Compared with original nanoparticles, the nanofibers with photosensitizer Ce6 retained within tumor site for a longer time. Collectively, we provided a good example to fully use the intrinsic properties of different drugs and linkers to construct tumor microenvironment-responsive charge reversal and shape transformable nanoparticles with synergistic antitumor effect.
7.Self-propelled nanomotor reconstructs tumor microenvironment through synergistic hypoxia alleviation and glycolysis inhibition for promoted anti-metastasis.
Wenqi YU ; Ruyi LIN ; Xueqin HE ; Xiaotong YANG ; Huilin ZHANG ; Chuan HU ; Rui LIU ; Yuan HUANG ; Yi QIN ; Huile GAO
Acta Pharmaceutica Sinica B 2021;11(9):2924-2936
Solid tumors always exhibit local hypoxia, resulting in the high metastasis and inertness to chemotherapy. Reconstruction of hypoxic tumor microenvironment (TME) is considered a potential therapy compared to directly killing tumor cells. However, the insufficient oxygen delivery to deep tumor and the confronting "Warburg effect" compromise the efficacy of hypoxia alleviation. Herein, we construct a cascade enzyme-powered nanomotor (NM-si), which can simultaneously provide sufficient oxygen in deep tumor and inhibit the aerobic glycolysis to potentiate anti-metastasis in chemotherapy. Catalase (Cat) and glucose oxidase (GOx) are co-adsorbed on our previously reported CAuNCs@HA to form self-propelled nanomotor (NM), with hexokinase-2 (HK-2) siRNA further condensed (NM-si). The persistent production of oxygen bubbles from the cascade enzymatic reaction propels NM-si to move forward autonomously and in a controllable direction along H
8.A nanocleaner specifically penetrates the blood‒brain barrier at lesions to clean toxic proteins and regulate inflammation in Alzheimer's disease.
Ting LEI ; Zhihang YANG ; Xue XIA ; Yuxiu CHEN ; Xiaotong YANG ; Rou XIE ; Fan TONG ; Xiaolin WANG ; Huile GAO
Acta Pharmaceutica Sinica B 2021;11(12):4032-4044
Insurmountable blood‒brain barrier (BBB) and complex pathological features are the key factors affecting the treatment of Alzheimer's disease (AD). Poor accumulation of drugs in lesion sites and undesired effectiveness of simply reducing A
9.The construction of nasal cavity-mimic M-cell model, design of M cell-targeting nanoparticles and evaluation of mucosal vaccination by nasal administration.
Xiaotong YANG ; Xianchun CHEN ; Ting LEI ; Lin QIN ; Yang ZHOU ; Chuan HU ; Qingfeng LIU ; Huile GAO
Acta Pharmaceutica Sinica B 2020;10(6):1094-1105
In order to better evaluate the transport effect of nanoparticles through the nasal mucosa, an nasal cavity-mimic model was designed based on M cells. The differentiation of M cells was induced by co-culture of Calu-3 and Raji cells in invert model. The ZO-1 protein staining and the transport of fluorescein sodium and dexamethasone showed that the inverted co-culture model formed a dense monolayer and possessed the transport ability. The differentiation of M cells was observed by up-regulated expression of Sialyl Lewis A antigen (SLAA) and integrin 1, and down-regulated activity of alkaline phosphatase. After targeting M cells with iRGD peptide (cRGDKGPDC), the transport of nanoparticles increased. , the co-administration of iRGD could result in the increase of nanoparticles transported to the brain through the nasal cavity after intranasal administration. In the evaluation of immune effect , the nasal administration of OVA-PLGA/iRGD led to more release of IgG, IFN-, IL-2 and secretory IgA (sIgA) compared with OVA@PLGA group. Collectively, the study constructed M cell model, and proved the enhanced effect of targeting towards M cell with iRGD on improving nasal immunity.
10.Editorial of Special Issue on Tumor Microenvironment and Drug Delivery.
Huile GAO ; Zhiqing PANG ; Wei HE
Acta Pharmaceutica Sinica B 2020;10(11):2016-2017

Result Analysis
Print
Save
E-mail