1.Analysis of the current situation of poor vision and wearing of glasses among junior high school students in Xi'an City
Hui GAO ; Jiaqi WANG ; Zhirong LIU ; Jiateng WANG ; Lu YE
International Eye Science 2026;26(1):174-178
AIM:To investigate the prevalence of visual impairment and its correction status among junior high school students in Xi'an, so as to provide evidence for the development of targeted myopia prevention and control strategies.METHODS: A stratified cluster sampling design was adopted. From March to May 2025, students in grades 7-9 were recruited from three schools in Xi'an, Shaanxi Province, China: Dongfang Middle School, the Middle School Attached to Xi'an University of Technology, and the Xingqing Campus of the High School Affiliated to Xi'an Jiaotong University. In total, 3 974 students were invited, including 1 726 in grade 7, 1 206 in grade 8, and 1 042 in grade 9. The visual acuity was measured monocularly using a 5 m standard logarithmic visual acuity chart, with the fellow eye occluded; the line corresponding to the smallest optotype that could be correctly identified was recorded as the visual acuity value. Non-cycloplegic autorefraction was performed with a desktop autorefractor to obtain spherical equivalent(SE)values for refractive error screening.RESULTS: This study initially included 3 974 students, of whom 32 did not participate in the vision test, resulting in 3 942 students being included in the final analysis. Among them, 3 067(77.80%)were identified with poor vision. The prevalence of myopia was 81.47%(1 746)in males and 87.55%(1 575)in females(P<0.01). A stratified analysis by grade showed myopia rates of 81.72%(1 386)in junior grade one, 84.47%(1 017)in junior grade two, and 88.10%(918)in junior grade three, demonstrating a significant upward trend with increasing grade level(χ2=19.8484, P<0.01). Among the 3 321 myopic students, 2 287 adopted corrective measures. The rates of full correction, under-correction, and non-correction among all myopic students were 48.15%(1 599), 20.71%(688), and 31.14%(1 034), respectively. The rate of non-correction was significantly higher in male students than in females(32.70% vs 29.40%, χ2=4.2222, P<0.05).CONCLUSION: The findings indicate a high prevalence of visual impairment among junior high school students in Xi'an, coupled with suboptimal spectacle-wearing and full-correction rates. There is an urgent need for collaborative efforts across society, schools, and families to implement effective interventions to slow the onset and progression of myopia in this population.
2.Effect of community comprehensive management model intervention among patients with dyslipidemia
GAO Hui ; XIE Liang ; YAO Chunyang ; WANG Linhong ; JIN Liu ; HU Jie
Journal of Preventive Medicine 2026;38(1):15-19
Objective:
To evaluate the effect of community comprehensive management model intervention among patients with dyslipidemia, so as to provide the reference for optimizing community management strategies and improving the target achievement rate for blood lipids among this population.
Methods:
From May to June 2023, a multi-stage stratified random sampling method was employed to select patients with dyslipidemia from primary healthcare institutions in Jiaxing City, Zhejiang Province. Eligible participants were randomly assigned to either a control group or an intervention group. The control group received routine management, while the intervention group was subjected to a community comprehensive management model in addition to the routine care. Both groups were followed up for 24 months. Data on demographic characteristics, lifestyle behaviors, physical examination indices, and blood biochemical indicators were collected at baseline and after the intervention through questionnaires, physical examinations, and laboratory tests. Changes in obesity rate, central obesity rate, target achievement rates for blood lipids, blood pressure, and blood glucose, as well as lifestyle modifications, were analyzed. Differences between the two groups before and after the intervention were assessed using generalized estimating equations (GEE).
Results:
The control group consisted of 560 patients, including 303 females (54.11%) and 430 individuals aged ≥65 years (76.79%). The intervention group also included 560 patients, with 300 females (53.57%) and 431 individuals aged ≥65 years (76.96%). Before the intervention, no statistically significant differences were observed between the two groups in terms of gender, age, educational level, history of chronic diseases, and atherosclerotic cardiovascular disease risk stratification (all P>0.05). After 24 months of intervention, interaction effects between group and time were observed for obesity rate, central obesity rate, target achievement rate for blood lipids, target achievement rate for blood glucose, composite target achievement rate, physical activity rate, and medication adherence (all P<0.05). Specifically, the intervention group demonstrated lower rates of obesity and central obesity, and higher target achievement rate of blood lipids, target achievement rate of blood glucose, composite target achievement rate, physical activity rate, and medication adherence compared to the control group.
Conclusion
The community comprehensive management model contributed to improvements in multiple metabolic parameters (including body weight, waist circumference, blood lipids, and blood glucose) among patients with dyslipidemia, and was associated with increased physical activity rate and medication adherence.
3.Identification of core genes of osteoarthritis by bioinformatics
Xuekun ZHU ; Heng LIU ; Hui FENG ; Yunlong GAO ; Lei WEN ; Xiaosong CAI ; Ben ZHAO ; Min ZHONG
Chinese Journal of Tissue Engineering Research 2025;29(3):637-644
BACKGROUND:At present,osteoarthritis has become a major disease affecting the quality of life of the elderly,and the therapeutic effect is poor,often focusing on preventing the disease process,and the pathogenesis of osteoarthritis is still not fully understood.Bioinformatics analysis was carried out to explore the main pathogenesis of osteoarthritis and related mechanisms of gene coding regulation. OBJECTIVE:To screen core differential genes with a major role in osteoarthritis by gene expression profiling. METHODS:Datasets were downloaded from the Gene Expression Omnibus(GEO):GSE114007,GSE117999,and GSE129147.Differential genes in the GSE114007 and GSE117999 data collections were screened using R software,performing differential genes to weighted gene co-expression network analysis.The module genes most relevant to osteoarthritis were selected to perform protein interaction analysis.Candidate core genes were selected using the cytocape software.The candidate core genes were subsequently subjected to least absolute shrinkage and selection operator regression and COX analysis to identify the core genes with a key role in osteoarthritis.The accuracy of the core genes was validated using an external dataset,GSE129147. RESULTS AND CONCLUSION:(1)A total of 477 differential genes were identified,265 differential genes associated with osteoarthritis were obtained by weighted gene co-expression network analysis,and 8 candidate core genes were identified.The least absolute shrinkage and selection operator regression analysis finally yielded a differential gene ASPM with core value that was externally validated.(2)It is concluded that abnormal gene ASPM expression screened by bioinformatics plays a key central role in osteoarthritis.
4.Protective Effect of Shengxiantang on Myocardial Microvascular Injury in Rats with Chronic Heart Failure
Hui GAO ; Zeqi YANG ; Fan GAO ; Hongjing LI ; Aiyangzi LU ; Xingchao LIU ; Qiuhong GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):35-42
ObjectiveTo explore the protective effect of Shengxiantang on cardiac function and myocardial microvascular injury in rats with chronic heart failure (CHF). MethodsThe CHF rat model was prepared by aortic arch constriction (TAC). Of the 72 SD rats, 8 were randomly selected as the sham operation group, where the chest was opened without ligating the aortic arch. The 40 successfully modeled rats were randomly divided into the model group, the Shengxiantang low-, medium-, and high-dose groups (5.1, 10.2, 20.4 g·kg-1), and the trimetazidine group (6.3 mg·kg-1), with 8 rats in each group. Drug administration began 4 weeks after modeling. The administration groups received the corresponding drugs by gavage, while the sham operation and model groups were given the same amount of distilled water for 8 consecutive weeks. Echocardiography was used to assess cardiac function. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of nitric oxide (NO), endothelin (ET-1), vascular endothelial growth factor (VEGF), and von Willebrand factor (vWF). Ultrastructural changes of microvessels were observed by transmission electron microscopy. Immunohistochemistry was used to detect the expression levels of ATP synthase subunit (ATP5D) and F-actin in myocardial tissue. Western blot was used to detect the expression levels of occludin, claudin, vascular endothelial cadherin (VE-Cadherin), and zonula occludens-1 (ZO-1). Microvessel density was measured by immunofluorescence staining. ResultsCompared with the sham operation group, the ejection fraction (EF) and left ventricular shortening fraction (FS) in the model group were significantly decreased (P<0.01), while the left ventricular diastolic diameter (LVIDd), left ventricular systolic diameter (LVIDs), left ventricular end-diastolic posterior wall thickness (LVPWd), left ventricular end-systolic posterior wall thickness (LVPWs), left ventricular end-diastolic volume (LVVOLd), and left ventricular end-systolic volume (LVVOLs) were significantly increased (P<0.01). The levels of NO and VEGF were significantly decreased (P<0.01), while the levels of ET-1 and vWF were significantly increased (P<0.01). Under electron microscopy, the microvascular basement membrane was incomplete and the tight junctions were blurred. The expression levels of ATP5D, F-actin, occludin, claudin, ZO-1, and VE-Cadherin were significantly decreased (P<0.05, P<0.01), and the relative density of microvessels was significantly reduced (P<0.05, P<0.01). After intervention with Shengxiantang, the EF and FS of CHF rats significantly increased (P<0.01), while the LVIDd, LVIDs, LVPWd, LVPWs, LVVOLd, and LVVOLs significantly decreased (P<0.01). The levels of NO and VEGF significantly increased (P<0.01), while the levels of ET-1 and vWF significantly decreased (P<0.01). Under electron microscopy, the microvascular basement membrane was relatively complete and the tight junctions were more continuous. The expression levels of ATP5D, F-actin, occludin, claudin, ZO-1, and VE-Cadherin significantly increased (P<0.05, P<0.01), and the relative density of microvessels significantly increased (P<0.01). ConclusionShengxiantang can effectively improve the cardiac function of CHF rats, reduce microvascular endothelial injury, strengthen the connection between endothelial cells, and increase microvessel density, thereby protecting myocardial microvascular injury.
5.Protective Effect of Shengxiantang on Myocardial Microvascular Injury in Rats with Chronic Heart Failure
Hui GAO ; Zeqi YANG ; Fan GAO ; Hongjing LI ; Aiyangzi LU ; Xingchao LIU ; Qiuhong GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):35-42
ObjectiveTo explore the protective effect of Shengxiantang on cardiac function and myocardial microvascular injury in rats with chronic heart failure (CHF). MethodsThe CHF rat model was prepared by aortic arch constriction (TAC). Of the 72 SD rats, 8 were randomly selected as the sham operation group, where the chest was opened without ligating the aortic arch. The 40 successfully modeled rats were randomly divided into the model group, the Shengxiantang low-, medium-, and high-dose groups (5.1, 10.2, 20.4 g·kg-1), and the trimetazidine group (6.3 mg·kg-1), with 8 rats in each group. Drug administration began 4 weeks after modeling. The administration groups received the corresponding drugs by gavage, while the sham operation and model groups were given the same amount of distilled water for 8 consecutive weeks. Echocardiography was used to assess cardiac function. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of nitric oxide (NO), endothelin (ET-1), vascular endothelial growth factor (VEGF), and von Willebrand factor (vWF). Ultrastructural changes of microvessels were observed by transmission electron microscopy. Immunohistochemistry was used to detect the expression levels of ATP synthase subunit (ATP5D) and F-actin in myocardial tissue. Western blot was used to detect the expression levels of occludin, claudin, vascular endothelial cadherin (VE-Cadherin), and zonula occludens-1 (ZO-1). Microvessel density was measured by immunofluorescence staining. ResultsCompared with the sham operation group, the ejection fraction (EF) and left ventricular shortening fraction (FS) in the model group were significantly decreased (P<0.01), while the left ventricular diastolic diameter (LVIDd), left ventricular systolic diameter (LVIDs), left ventricular end-diastolic posterior wall thickness (LVPWd), left ventricular end-systolic posterior wall thickness (LVPWs), left ventricular end-diastolic volume (LVVOLd), and left ventricular end-systolic volume (LVVOLs) were significantly increased (P<0.01). The levels of NO and VEGF were significantly decreased (P<0.01), while the levels of ET-1 and vWF were significantly increased (P<0.01). Under electron microscopy, the microvascular basement membrane was incomplete and the tight junctions were blurred. The expression levels of ATP5D, F-actin, occludin, claudin, ZO-1, and VE-Cadherin were significantly decreased (P<0.05, P<0.01), and the relative density of microvessels was significantly reduced (P<0.05, P<0.01). After intervention with Shengxiantang, the EF and FS of CHF rats significantly increased (P<0.01), while the LVIDd, LVIDs, LVPWd, LVPWs, LVVOLd, and LVVOLs significantly decreased (P<0.01). The levels of NO and VEGF significantly increased (P<0.01), while the levels of ET-1 and vWF significantly decreased (P<0.01). Under electron microscopy, the microvascular basement membrane was relatively complete and the tight junctions were more continuous. The expression levels of ATP5D, F-actin, occludin, claudin, ZO-1, and VE-Cadherin significantly increased (P<0.05, P<0.01), and the relative density of microvessels significantly increased (P<0.01). ConclusionShengxiantang can effectively improve the cardiac function of CHF rats, reduce microvascular endothelial injury, strengthen the connection between endothelial cells, and increase microvessel density, thereby protecting myocardial microvascular injury.
6.Effect of Yiqi Wenyang Huoxue Lishui Components on Cardiac Function and Mitochondrial Energy Metabolism in CHF Rats
Hui GAO ; Zeqi YANG ; Xin LIU ; Fan GAO ; Yangyang HAN ; Aiyangzi LU ; Xingchao LIU ; Qiuhong GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):27-36
ObjectiveTo investigate the effects of Yiqi Wenyang Huoxue Lishui components on the cardiac function and mitochondrial energy metabolism in the rat model of chronic heart failure (CHF) and explore the underlying mechanism. MethodsThe rat model of CHF was prepared by transverse aortic constriction (TAC). Eight of the 50 SD rats were randomly selected as the sham group, and the remaining 42 underwent TAC surgery. The 24 SD rats successfully modeled were randomized into model, trimetazidine (6.3 mg·kg-1), and Yiqi Wenyang Huoxue Lishui components (60 mg·kg-1 total saponins of Astragali Radix, 10 mg·kg-1 total phenolic acids of Salviae Miltiorrhizae Radix et Rhizoma, 190 mg·kg-1 aqueous extract of Lepidii Semen, and 100 mg·kg-1 cinnamaldehyde) groups. The rats were administrated with corresponding agents by gavage, and those in the sham and model groups were administrated with the same amount of normal saline at a dose of 10 mL·kg-1 for 8 weeks. Echocardiography was used to examine the cardiac function in rats. Enzyme-linked immunosorbent assay was employed to determine the serum levels of N-terminal pro-B-type natriuretic peptide (NT-ProBNP), hypersensitive troponin(cTnI), creatine kinase (CK), lactate dehydrogenase (LD), free fatty acids (FFA), superoxide dismutase (SOD), and malondialdehyde (MDA). The colorimetric assay was employed to measure the levels of adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) in the myocardial tissue. The pathological changes in the myocardial tissue were observed by hematoxylin-eosin staining and Masson staining. The Na+-K+-ATPase and Ca2+-Mg2+-ATPase activities in the myocardial tissue were determined by the colorimetric assay. The ultrastructural changes of myocardial mitochondria were observed by transmission electron microscopy. Western blot was employed to determine the protein levels of ATP synthase subunit delta (ATP5D), glucose transporter 4 (GLUT4), and carnitine palmitoyltransferase-1 (CPT-1). The mitochondrial complex assay kits were used to determine the activities of mitochondrial complexes Ⅰ, Ⅱ, Ⅲ, and Ⅳ. ResultsCompared with the sham group, the model group showed a loosening arrangement of cardiac fibers, fracture and necrosis of partial cardiac fibers, inflammatory cells in necrotic areas, massive blue fibrotic tissue in the myocardial interstitium, increased collagen fiber area and myocardial fibrosis, destroyed mitochondria, myofibril disarrangement, sparse myofilaments, and fractured and reduced cristae. In addition, the rats in the model group showed declined ejection fraction (EF) and fractional shortening (FS), risen left ventricular end-diastolic diameter (LVIDd), left ventricular end-systolic diameter (LVIDs), left ventricular end-diastolic posterior wall thickness (LVPWd), left ventricular end-systolic posterior wall thickness (LVPWs), left ventricular end-diastolic volume (LVVOLd), and left ventricular end-systolic volume (LVVOLs), elevated levels of NT-ProBNP, cTnI, CK, MDA, FFA, and LD, lowered level of SOD, down-regulated protein levels of GLUT4 and CPT-1, decreased activities of Na+-K+-ATPase, Ca2+-Mg2+-ATPase, and respiratory complexes Ⅰ-Ⅳ, and declined levels of ATP5D, ATP, ADP, and AMP (P<0.05, P<0.01). Compared with the model group, the Yiqi Wenyang Huoxue Lishui components and trimetazidine groups showed alleviated pathological damage of the mitochondria and mycardial tissue, risen EF and FS, declined LVIDd, LVIDs, LVPWd, LVPWs, LVVOLd, and LVVOLs, lowered levels of NT-ProBNP, cTnI, CK, MDA, FFA, and LD, elevated level of SOD, up-regulated protein levels of GLUT4 and CPT-1, increased activities of Na+-K+-ATPase, Ca2+-Mg2+-ATPase, and respiratory complexes Ⅰ-Ⅳ, and elevated levels of ATP5D, ATP, ADP, and AMP (P<0.05, P<0.01). ConclusionYiqi Wenyang Huoxue Lishui components can improve the cardiac function, reduce myocardial injury, regulate glucose and lipid metabolism, optimize the utilization of substrates, and alleviate the damage of mitochondrial structure and function, thus improving the energy metabolism of the myocardium in the rat model of CHF.
7.Pharmaceutical care for a patient with empagliflozin-induced euglycemic diabetic ketoacidosis
Lili YANG ; Qi LI ; Hui WANG ; Ruilong GAO ; Min MAO
China Pharmacy 2025;36(2):214-218
OBJECTIVE To provide a reference for the pharmaceutical care of a patient with type 2 diabetes mellitus (T2DM) and limb-girdle muscular dystrophy (LGMD) who developed euglycemic diabetic ketoacidosis (euDKA) after taking empagliflozin. METHODS Clinical pharmacists provided pharmaceutical care for a patient with T2DM and LGMD who developed euDKA after taking empagliflozin. According to the patient’s recent use of medications and his conditions, clinical pharmacists assessed the correlation between euDKA and empagliflozin as “very likely”. As to euDKA, clinical pharmacists suggested discontinuing empagliflozin and metformin, and giving intravenous infusion of 10% Glucose injection instead of 5% Glucose injection for fluid resuscitation. Clinical pharmacists monitored the patient’s laboratory indicators such as arterial blood gas analysis, blood/urine ketones and electrolytes. They assisted physicians to decide when to stop intravenous supplements of liquid and insulin. Clinical pharmacists also assisted physicians to adjust the antidiabetic drugs and educated the patient to avoid empagliflozin or other sodium- glucose linked transporter 2 inhibitors (SGLT2i). RESULTS Physicians adopted the suggestions of clinical pharmacists. After treatment, the patient’s condition improved, and he was allowed to be discharged with medication. CONCLUSIONS euDKA is a relatively rare and serious adverse reaction associated with SGLT2i, and the patients with LGMD are susceptible to euDKA. Clinical pharmacists assist physicians in developing personalized medication plans by evaluating the association between euDKA and empagliflozin, adjusting medication regimens,conducting pharmaceutical monitoring,and other pharmaceutical services. Meanwhile, they provide medication education to patients to ensure their medication safety.
8.Pharmaceutical care for a patient with empagliflozin-induced euglycemic diabetic ketoacidosis
Lili YANG ; Qi LI ; Hui WANG ; Ruilong GAO ; Min MAO
China Pharmacy 2025;36(2):214-218
OBJECTIVE To provide a reference for the pharmaceutical care of a patient with type 2 diabetes mellitus (T2DM) and limb-girdle muscular dystrophy (LGMD) who developed euglycemic diabetic ketoacidosis (euDKA) after taking empagliflozin. METHODS Clinical pharmacists provided pharmaceutical care for a patient with T2DM and LGMD who developed euDKA after taking empagliflozin. According to the patient’s recent use of medications and his conditions, clinical pharmacists assessed the correlation between euDKA and empagliflozin as “very likely”. As to euDKA, clinical pharmacists suggested discontinuing empagliflozin and metformin, and giving intravenous infusion of 10% Glucose injection instead of 5% Glucose injection for fluid resuscitation. Clinical pharmacists monitored the patient’s laboratory indicators such as arterial blood gas analysis, blood/urine ketones and electrolytes. They assisted physicians to decide when to stop intravenous supplements of liquid and insulin. Clinical pharmacists also assisted physicians to adjust the antidiabetic drugs and educated the patient to avoid empagliflozin or other sodium- glucose linked transporter 2 inhibitors (SGLT2i). RESULTS Physicians adopted the suggestions of clinical pharmacists. After treatment, the patient’s condition improved, and he was allowed to be discharged with medication. CONCLUSIONS euDKA is a relatively rare and serious adverse reaction associated with SGLT2i, and the patients with LGMD are susceptible to euDKA. Clinical pharmacists assist physicians in developing personalized medication plans by evaluating the association between euDKA and empagliflozin, adjusting medication regimens,conducting pharmaceutical monitoring,and other pharmaceutical services. Meanwhile, they provide medication education to patients to ensure their medication safety.
9.Regulation of Immune Function by Exercise-induced Metabolic Remodeling
Hui-Guo WANG ; Gao-Yuan YANG ; Xian-Yan XIE ; Yu WANG ; Zi-Yan LI ; Lin ZHU
Progress in Biochemistry and Biophysics 2025;52(6):1574-1586
Exercise-induced metabolic remodeling is a fundamental adaptive process whereby the body reorganizes systemic and cellular metabolism to meet the dynamic energy demands posed by physical activity. Emerging evidence reveals that such remodeling not only enhances energy homeostasis but also profoundly influences immune function through complex molecular interactions involving glucose, lipid, and protein metabolism. This review presents an in-depth synthesis of recent advances, elucidating how exercise modulates immune regulation via metabolic reprogramming, highlighting key molecular mechanisms, immune-metabolic signaling axes, and the authors’ academic perspective on the integrated “exercise-metabolism-immunity” network. In the domain of glucose metabolism, regular exercise improves insulin sensitivity and reduces hyperglycemia, thereby attenuating glucose toxicity-induced immune dysfunction. It suppresses the formation of advanced glycation end-products (AGEs) and interrupts the AGEs-RAGE-inflammation positive feedback loop in innate and adaptive immune cells. Importantly, exercise-induced lactate, traditionally viewed as a metabolic byproduct, is now recognized as an active immunomodulatory molecule. At high concentrations, lactate can suppress immune function through pH-mediated effects and GPR81 receptor activation. At physiological levels, it supports regulatory T cell survival, promotes macrophage M2 polarization, and modulates gene expression via histone lactylation. Additionally, key metabolic regulators such as AMPK and mTOR coordinate immune cell energy balance and phenotype; exercise activates the AMPK-mTOR axis to favor anti-inflammatory immune cell profiles. Simultaneously, hypoxia-inducible factor-1α (HIF-1α) is transiently activated during exercise, driving glycolytic reprogramming in T cells and macrophages, and shaping the immune landscape. In lipid metabolism, exercise alleviates adipose tissue inflammation by reducing fat mass and reshaping the immune microenvironment. It promotes the polarization of adipose tissue macrophages from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype. Moreover, exercise alters the secretion profile of adipokines—raising adiponectin levels while reducing leptin and resistin—thereby influencing systemic immune balance. At the circulatory level, exercise improves lipid profiles by lowering pro-inflammatory free fatty acids (particularly saturated fatty acids) and triglycerides, while enhancing high-density lipoprotein (HDL) function, which has immunoregulatory properties such as endotoxin neutralization and macrophage cholesterol efflux. Regarding protein metabolism, exercise triggers the expression of heat shock proteins (HSPs) that act as intracellular chaperones and extracellular immune signals. Exercise also promotes the secretion of myokines (e.g., IL-6, IL-15, irisin, FGF21) from skeletal muscle, which modulate immune responses, facilitate T cell and macrophage function, and support immunological memory. Furthermore, exercise reshapes amino acid metabolism, particularly of glutamine, arginine, and branched-chain amino acids (BCAAs), thereby influencing immune cell proliferation, biosynthesis, and signaling. Leucine-mTORC1 signaling plays a key role in T cell fate, while arginine metabolism governs macrophage polarization and T cell activation. In summary, this review underscores the complex, bidirectional relationship between exercise and immune function, orchestrated through metabolic remodeling. Future research should focus on causative links among specific metabolites, signaling pathways, and immune phenotypes, as well as explore the epigenetic consequences of exercise-induced metabolic shifts. This integrated perspective advances understanding of exercise as a non-pharmacological intervention for immune regulation and offers theoretical foundations for individualized exercise prescriptions in health and disease contexts.
10.Inhibitory Effects of the Slit Guidance Ligand 1-3’ Untranslated Region on the Fibrotic Phenotype of Cardiac Fibroblasts
Ya WANG ; Huayan WU ; Yuan GAO ; Rushi WU ; Peiying GUAN ; Hui LI ; Juntao FANG ; Zhixin SHAN
Journal of Sun Yat-sen University(Medical Sciences) 2025;46(3):466-474
ObjectiveTo study the regulatory effect of the partial sequence within the 3’ untranslated region (3’UTR) of slit guidance ligand 1 (Slit1) (Slit1-3’UTR) on the fibrotic phenotypes of cardiac fibroblasts (CFs) and its potential mechanism. MethodsThe adenovirus vector was used to overexpress the 1526nt sequence of Slit1-3’UTR in ICR neonatal mouse CFs (mCFs). The expression of fibrosis-related genes in mCFs, such as collagen type 1 alpha1(COL1A1), collagen type 3 alpha3 (COL3A1) and alpha smooth muscle actin (α-SMA) were detected by Western blot assay. The effect of Slit1-3’UTR 1526nt on the proliferation and migration of mCFs was assessed by EdU staining and Trans-well assays. Angiotensin Ⅱ (Ang Ⅱ) was used to treat mCFs, and the impact of Slit1-3’UTR 1526nt on the fibrotic phenotypes of Ang Ⅱ-induced mCFs was evaluated. After overexpression of Slit1-3’UTR 1526nt, miR-34a-5p mimic was transfected into mCFs, followed by actinomycin D treatment to detect the mRNA stability of Slit1-3’UTR 1526nt, and the levels of miR-34a-5p and its target gene SIRT1(si-SIRT1) in mCFs were determined. The effects of miR-34a-5p and small interfering RNA targeting SIRT1 on the Slit1-3’UTR 1526nt-mediated regulation of fibrotic phenotypes were also determined. ResultsAdenovirus-mediated overexpression of Slit 1-3’UTR 1526nt was achieved in mCFs. Overexpression of Slit 1-3’UTR 1526nt markedly inhibited the expression of the fibrosis-related genes, proliferation and migration of mCFs and fibrotic phenotypes of Ang Ⅱ. The results of actinomycin D assay showed that miR-34a-5p inhibited the stability of Slit1-3’UTR 1526nt in mCFs, while the level of miR-34a-5p was reduced in mCFs with overexpression of Slit1-3’UTR 1526nt. Transfection of miR-34a-5p promoted the fibrotic phenotypes, and reversed the inhibitory effect of Slit1-3’UTR 1526nt on the fibrotic phenotypes of mCFs. Overexpression of Slit1-3’UTR 1526nt significantly increased the level of miR-34a-5p target gene SIRT1 in mCFs. Transfection of miR-34a-5p and si-SIRT1 consistently reversed the inhibitory effects of Slit1-3’UTR 1526nt on the fibrotic phenotypes of mCFs. ConclusionSlit1-3’UTR1526nt inhibits the fibrotic phenotypes of mCFs by binding to miR-34a-5p and increasing the expression of its target gene of SIRT1.


Result Analysis
Print
Save
E-mail