1.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
2.Analysis of changes and influencing factors of activation rate of peripheral blood monocytes after liver transplantation
Yu GONG ; Hui WU ; Jie ZHU ; Ting WANG ; Xiaowu HUANG
Chinese Journal of Clinical Medicine 2025;32(1):101-107
Objective To analyze the effect of the activation rate of peripheral blood monocytes on the recovery of patients after liver transplantation and to initially explore the possible influencing factors for differences in monocyte activation rates. Methods A total of 139 patients who underwent orthotopic liver transplantation from September 2020 to June 2023 at Department of Liver Surgery and Transplantation of Zhongshan Hospital, Fudan University were selected. The proportion of CD14+HLA-DR+ monocytes in peripheral blood was defined as the monocyte activation rate. The difference in monocyte activation rates between postoperative day 7 (POD7) and postoperative day 1 (POD1) was calculated as Δ, and patients were divided into Δ>0 group (n=73) and Δ<0 group (n=66). The two groups were compared in terms of complete blood count, liver and kidney function, coagulation indicators, infection indicators, ICU length of stay, total length of hospitalization, and 90-day mortality. Changes in the proportions of different monocytes subsets (Mo0, Mo1, Mo2, and Mo3) and HLA-DR expression in peripheral blood on POD1 and POD7 were detected using flow cytometry. Results The ICU length of stay in the Δ<0 group was significantly longer than that in the Δ>0 group (18[12, 26] days vs 14[10, 20.5] days, P=0.018). On POD1, the proportion of Mo0 in the Δ>0 group was significantly lower than that in the Δ<0 group (P<0.05); on POD7, the proportion of Mo0 in the Δ>0 group was significantly lower than that in the Δ<0 group (P<0.001), while the proportions of Mo1, Mo2, and Mo3 were significantly higher than those in the Δ<0 group (P<0.001). Compared to POD1, the HLA-DR expression level of Mo0 in peripheral blood of patients with liver transplantation significantly decreased on POD7 (P<0.01), while there was no significant difference in HLA-DR expression levels of Mo1, Mo2, and Mo3. Conclusions Increased proportion of Mo0 (CD14lowCD16−HLA-DRlow) among peripheral blood monocyte subsets may be one of the influencing factors for the differences in monocyte activation rates in patients with liver transplantation. The difference in monocyte activation rate can serve as a new clinical indicator for assessing changes in the immune status and postoperative recovery of patients with liver transplantation.
3.The introduction on standards system of the pharmaceutical packaging materials in the Chinese Pharmacopoeia 2025 Edition
CHEN Lei ; YU Hui ; WANG Yan ; ZHANG Jun ; MA Shuangcheng
Drug Standards of China 2025;26(1):067-076
The standard of Pharmaceutical packaging materials is an important part of the Chinese Pharmacopoeia. This article focuses on working background, general idea, working process, main framework, and its role and significance of the pharmaceutical packaging materials standards system in the Chinese Pharmacopoeia 2025 Edition, which can contribute to accurately understand and utilize the standards in the Chinese Pharmacopoeia 2025 Edition.
4.Cloning, subcellular localization and expression analysis of SmIAA7 gene from Salvia miltiorrhiza
Yu-ying HUANG ; Ying CHEN ; Bao-wei WANG ; Fan-yuan GUAN ; Yu-yan ZHENG ; Jing FAN ; Jin-ling WANG ; Xiu-hua HU ; Xiao-hui WANG
Acta Pharmaceutica Sinica 2025;60(2):514-525
The auxin/indole-3-acetic acid (Aux/IAA) gene family is an important regulator for plant growth hormone signaling, involved in plant growth, development, as well as response to environmental stresses. In the present study, we identified
5.Prevalence and related factors of screening myopia among students in special education schools in Tianjin
XI Wei, HAN Hui, XIONG Wenjuan, HAN Yu, WANG Hui, ZHANG Xin
Chinese Journal of School Health 2025;46(3):443-446
Objective:
To understand the current situation and related factors of screening myopia among students in special education schools, so as to provide evidence for promoting the health level of this population.
Methods:
From November 2021 to December 2023, a total of 281 students from 6 special education schools in 5 districts of Tianjin were selected by cluster random sampling method for computer optometry visual acuity examination for non ciliary paralysis and questionnaire survey. Multiple Logistic regression was performed to analyze the influencing factors of screening myopia among special education students.
Results:
The screening myopia detection rate among these special education students in Tianjin was 27.0%, and the screening myopia detection rates of students with autism, developmental delays, and intellectual disabilities were 22.4%, 12.5%, and 33.0%, respectively. The degree of myopia increased with age ( χ 2 trend =22.65, P <0.01). Multivariate Logistic regression analysis showed that age(10-13 years old: OR =5.40, 14-17 years old: OR =8.40, 18-23 years old: OR =6.02), accommodation(non resident: OR =0.29), daily mobile phone usage ≥2 hours ( OR =2.37), and daily computer/tablet usage ≥2 hours ( OR =2.70) were the risk factors for screening myopia among special education students ( P <0.05).
Conclusions
The detection rate and degree of screening myopia increase with age in special education students. Prolonged screen time exposure is a primary risk factor for screening myopia in special education students. Effective myopia prevention and control strategies should be designed according to the characteristics of special education students.
6.Heterogeneity of Adipose Tissue From a Single-cell Transcriptomics Perspective
Yong-Lang WANG ; Si-Si CHEN ; Qi-Long LI ; Yu GONG ; Xin-Yue DUAN ; Ye-Hui DUAN ; Qiu-Ping GUO ; Feng-Na LI
Progress in Biochemistry and Biophysics 2025;52(4):820-835
Adipose tissue is a critical energy reservoir in animals and humans, with multifaceted roles in endocrine regulation, immune response, and providing mechanical protection. Based on anatomical location and functional characteristics, adipose tissue can be categorized into distinct types, including white adipose tissue (WAT), brown adipose tissue (BAT), beige adipose tissue, and pink adipose tissue. Traditionally, adipose tissue research has centered on its morphological and functional properties as a whole. However, with the advent of single-cell transcriptomics, a new level of complexity in adipose tissue has been unveiled, showing that even under identical conditions, cells of the same type may exhibit significant variation in morphology, structure, function, and gene expression——phenomena collectively referred to as cellular heterogeneity. Single-cell transcriptomics, including techniques like single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq), enables in-depth analysis of the diversity and heterogeneity of adipocytes at the single-cell level. This high-resolution approach has not only deepened our understanding of adipocyte functionality but also facilitated the discovery of previously unidentified cell types and gene expression patterns that may play key roles in adipose tissue function. This review delves into the latest advances in the application of single-cell transcriptomics in elucidating the heterogeneity and diversity within adipose tissue, highlighting how these findings have redefined the understanding of cell subpopulations within different adipose depots. Moreover, the review explores how single-cell transcriptomic technologies have enabled the study of cellular communication pathways and differentiation trajectories among adipose cell subgroups. By mapping these interactions and differentiation processes, researchers gain insights into how distinct cellular subpopulations coordinate within adipose tissues, which is crucial for maintaining tissue homeostasis and function. Understanding these mechanisms is essential, as dysregulation in adipose cell interactions and differentiation underlies a range of metabolic disorders, including obesity and diabetes mellitus type 2. Furthermore, single-cell transcriptomics holds promising implications for identifying therapeutic targets; by pinpointing specific cell types and gene pathways involved in adipose tissue dysfunction, these technologies pave the way for developing targeted interventions aimed at modulating specific adipose subpopulations. In summary, this review provides a comprehensive analysis of the role of single-cell transcriptomic technologies in uncovering the heterogeneity and functional diversity of adipose tissues.
7.Alleviation of Ulcerative Colitis by Shaoyaotang via Inhibiting Glycolysis Through SIRT6/HIF-1α Pathway
Yiling XIA ; Hui CAO ; Dongsheng WU ; Bo ZOU ; Erle LIU ; Yiwen WANG ; Shaijin JIANG ; Yiqian YU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):10-19
ObjectiveTo investigate the role of silent information regulatory protein (SIRT6)/hypoxia-inducible factor-1α (HIF-1α) pathway in regulating the reprogramming of glucose metabolism in ulcerative colitis (UC) and the mechanism of intervention of Shaoyaotang. MethodsForty-eight c57bL/6 mice were randomly divided into a blank group, a model group, a Mesalazine group (0.42 g·kg-1), a Shaoyaotang group (31.08 g·kg-1), an inhibitor group (OSS-128167, 50 mg·kg-1), and an inhibitor + Shaoyaotang group (50 mg·kg-1 OSS-128167 + 31.08 g·kg-1 Shaoyaotang). A UC model was established by the administration of 2.5% dextran sulfate sodium (DSS) solution for mice in other groups for 7 d, except for the blank group. The mice in each group were treated with saline, Mesalazine, Shaoyaotang, inhibitor, and inhibitor + Shaoyaotang, respectively, for 7 d. The mice were necropsied 24 h after the last administration of the drug. The blood was collected from the orbital region, and colon tissue was taken. Hematoxylin-eosin (HE) staining was used to observe the pathological changes in colon tissue. Enzyme-linked immunosorbent assay (ELISA) was employed to detect serum interleukin (IL)-10, IL-17, and IL-6 levels. A biochemical method was used to detect glucose and lactate dehydrogenase A (LDHA) levels. Immunohistochemistry (IHC) was employed to detect IL-22 and transforming growth factor-β1 (TGF-β1) levels in colon tissue, and Western blot and real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) were used to detect relative protein and mRNA expressions of SIRT6, HIF-1α, and LDHA. ResultsCompared with those of the blank group, disease activity index (DAI) scores of mice in the model group and inhibitor group were significantly increased (P<0.01). The length of colon tissue was significantly shortened, and colon tissue was congested and eroded. The pathohistological scores were significantly increased (P<0.01). The levels of serum inflammatory factors IL-17 and IL-6 were significantly elevated, and the levels of IL-10 were significantly decreased (P<0.01). The protein expressions of IL-22 and TGF-β1 were significantly reduced in colon tissue (P<0.01). The relative protein and mRNA expressions of SIRT6 were significantly decreased (P<0.01), and the relative protein and mRNA expressions of HIF-1α and LDHA and the contents of glucose and lactate were significantly elevated (P<0.01). The level of inflammation in the colon of the mice in the inhibitor group was more severe than that in the model group (P<0.01). Compared with the model group, the Mesalazine group, the Shaoyaotang group, and the inhibitor + Shaoyaotang group showed reduced colonic injury, significant decrease in serum IL-17 and IL-6, significant increase in IL-10 (P<0.01), significant increase in the protein expressions of IL-22 and TGF-β1 in colon tissue (P<0.01), significant increase in the protein expressions of SIRT6 and the relative mRNA expressions (P<0.01), and significant reduction in the protein expressions of HIF-1α and LDHA, the relative mRNA expressions, and the contents of glucose and lactate (P<0.01). Compared with those in the Shaoyaotang group, the serum IL-17 and IL-6 were significantly increased, and IL-10 was significantly decreased in the inhibitor + Shaoyaotang group (P<0.01). The protein expressions of IL-22 and TGF-β1 in colon tissue were significantly decreased (P<0.01). The expressions of SIRT6 protein and the relative mRNA expressions were significantly decreased (P<0.01). The protein expressions of HIF-1α and LDHA, the relative mRNA expressions, and the contents of glucose and lactate were significantly elevated (P<0.01). However, the difference between the Shaoyaotang group and the Mesalazine group was not significant. ConclusionShaoyaotang can effectively treat DSS-induced mice with UC through the SIRT6/HIF-1α pathway, and its mechanism of action may be related to the regulation of the SIRT6/HIF-1α pathway and glucose metabolism reprogramming and the inhibition of glycolysis.
8.Alleviation of Ulcerative Colitis by Shaoyaotang via Inhibiting Glycolysis Through SIRT6/HIF-1α Pathway
Yiling XIA ; Hui CAO ; Dongsheng WU ; Bo ZOU ; Erle LIU ; Yiwen WANG ; Shaijin JIANG ; Yiqian YU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):10-19
ObjectiveTo investigate the role of silent information regulatory protein (SIRT6)/hypoxia-inducible factor-1α (HIF-1α) pathway in regulating the reprogramming of glucose metabolism in ulcerative colitis (UC) and the mechanism of intervention of Shaoyaotang. MethodsForty-eight c57bL/6 mice were randomly divided into a blank group, a model group, a Mesalazine group (0.42 g·kg-1), a Shaoyaotang group (31.08 g·kg-1), an inhibitor group (OSS-128167, 50 mg·kg-1), and an inhibitor + Shaoyaotang group (50 mg·kg-1 OSS-128167 + 31.08 g·kg-1 Shaoyaotang). A UC model was established by the administration of 2.5% dextran sulfate sodium (DSS) solution for mice in other groups for 7 d, except for the blank group. The mice in each group were treated with saline, Mesalazine, Shaoyaotang, inhibitor, and inhibitor + Shaoyaotang, respectively, for 7 d. The mice were necropsied 24 h after the last administration of the drug. The blood was collected from the orbital region, and colon tissue was taken. Hematoxylin-eosin (HE) staining was used to observe the pathological changes in colon tissue. Enzyme-linked immunosorbent assay (ELISA) was employed to detect serum interleukin (IL)-10, IL-17, and IL-6 levels. A biochemical method was used to detect glucose and lactate dehydrogenase A (LDHA) levels. Immunohistochemistry (IHC) was employed to detect IL-22 and transforming growth factor-β1 (TGF-β1) levels in colon tissue, and Western blot and real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) were used to detect relative protein and mRNA expressions of SIRT6, HIF-1α, and LDHA. ResultsCompared with those of the blank group, disease activity index (DAI) scores of mice in the model group and inhibitor group were significantly increased (P<0.01). The length of colon tissue was significantly shortened, and colon tissue was congested and eroded. The pathohistological scores were significantly increased (P<0.01). The levels of serum inflammatory factors IL-17 and IL-6 were significantly elevated, and the levels of IL-10 were significantly decreased (P<0.01). The protein expressions of IL-22 and TGF-β1 were significantly reduced in colon tissue (P<0.01). The relative protein and mRNA expressions of SIRT6 were significantly decreased (P<0.01), and the relative protein and mRNA expressions of HIF-1α and LDHA and the contents of glucose and lactate were significantly elevated (P<0.01). The level of inflammation in the colon of the mice in the inhibitor group was more severe than that in the model group (P<0.01). Compared with the model group, the Mesalazine group, the Shaoyaotang group, and the inhibitor + Shaoyaotang group showed reduced colonic injury, significant decrease in serum IL-17 and IL-6, significant increase in IL-10 (P<0.01), significant increase in the protein expressions of IL-22 and TGF-β1 in colon tissue (P<0.01), significant increase in the protein expressions of SIRT6 and the relative mRNA expressions (P<0.01), and significant reduction in the protein expressions of HIF-1α and LDHA, the relative mRNA expressions, and the contents of glucose and lactate (P<0.01). Compared with those in the Shaoyaotang group, the serum IL-17 and IL-6 were significantly increased, and IL-10 was significantly decreased in the inhibitor + Shaoyaotang group (P<0.01). The protein expressions of IL-22 and TGF-β1 in colon tissue were significantly decreased (P<0.01). The expressions of SIRT6 protein and the relative mRNA expressions were significantly decreased (P<0.01). The protein expressions of HIF-1α and LDHA, the relative mRNA expressions, and the contents of glucose and lactate were significantly elevated (P<0.01). However, the difference between the Shaoyaotang group and the Mesalazine group was not significant. ConclusionShaoyaotang can effectively treat DSS-induced mice with UC through the SIRT6/HIF-1α pathway, and its mechanism of action may be related to the regulation of the SIRT6/HIF-1α pathway and glucose metabolism reprogramming and the inhibition of glycolysis.
9.Ultrasound-based radiogenomics: status, applications, and future direction
Si-Rui WANG ; Yu-Ting SHEN ; Bin HUANG ; Hui-Xiong XU
Ultrasonography 2025;44(2):95-111
Radiogenomics, an extension of radiomics, explores the relationship between imaging features and underlying gene expression patterns. This field is instrumental in providing reliable imaging surrogates, thus potentially representing an alternative to genetic testing. The rapidly growing area of radiogenomics that utilizes ultrasound (US) imaging seeks to elucidate the connections between US image characteristics and genomic data. In this review, the authors outline the radiogenomics workflow and summarize the applications of US-based radiogenomics. These include the prediction of gene variations, molecular subtypes, and other biological characteristics, as well as the exploration of the relationships between US phenotypes and cancer gene profiles. Although the field faces various challenges, US-based radiogenomics offers promising prospects and avenues for future research.
10.Ultrasound-based radiogenomics: status, applications, and future direction
Si-Rui WANG ; Yu-Ting SHEN ; Bin HUANG ; Hui-Xiong XU
Ultrasonography 2025;44(2):95-111
Radiogenomics, an extension of radiomics, explores the relationship between imaging features and underlying gene expression patterns. This field is instrumental in providing reliable imaging surrogates, thus potentially representing an alternative to genetic testing. The rapidly growing area of radiogenomics that utilizes ultrasound (US) imaging seeks to elucidate the connections between US image characteristics and genomic data. In this review, the authors outline the radiogenomics workflow and summarize the applications of US-based radiogenomics. These include the prediction of gene variations, molecular subtypes, and other biological characteristics, as well as the exploration of the relationships between US phenotypes and cancer gene profiles. Although the field faces various challenges, US-based radiogenomics offers promising prospects and avenues for future research.


Result Analysis
Print
Save
E-mail