1.Specific DNA barcodes screening, germplasm resource identification, and genetic diversity analysis of Platycodon grandiflorum
Xin WANG ; Yue SHI ; Jin-hui MAN ; Yu-ying HUANG ; Xiao-qin ZHANG ; Ke-lu AN ; Gao-jie HE ; Zi-qi LIU ; Fan-yuan GUAN ; Yu-yan ZHENG ; Xiao-hui WANG ; Sheng-li WEI
Acta Pharmaceutica Sinica 2024;59(1):243-252
Platycodonis Radix is the dry root of
2. Mechanism of ellagic acid improving cognitive dysfunction in APP/PS double transgenic mice based on PI3K/AKT/GSK-3β signaling pathway
Li-Li ZHONG ; Xin LU ; Ying YU ; Qin-Yan ZHAO ; Jing ZHANG ; Tong-Hui LIU ; Xue-Yan NI ; Li-Li ZHONG ; Yan-Ling CHE ; Dan WU ; Hong LIU
Chinese Pharmacological Bulletin 2024;40(1):90-98
Aim To investigate the effect of ellagic acid (EA) on cognitive function in APP/PS 1 double- transgenic mice, and to explore the regulatory mechanism of ellagic acid on the level of oxidative stress in the hippocampus of double-transgenic mice based on the phosphatidylinositol 3-kinase/protein kinase B/glycogen synthase kinase-3 (PI3K/AKT/GSK-3 β) signaling pathway. Methods Thirty-two SPF-grade 6-month-old APP/PS 1 double transgenic mice were randomly divided into four groups, namely, APP/PS 1 group, APP/PS1 + EA group, APP/PS1 + LY294002 group, APP/PS 1 + EA + LY294002 group, with eight mice in each group, and eight SPF-grade C57BL/6J wild type mice ( Wild type) were selected as the blank control group. The APP/PS 1 + EA group was given 50 mg · kg
3.Two new dalbergiphenols from Zhuang medicine Dalbergia rimosa Roxb
Cheng-sheng LU ; Wei-yu WANG ; Min ZHU ; Si-si QIN ; Zhao-hui LI ; Chen-yan LIANG ; Xu FENG ; Jian-hua WEI
Acta Pharmaceutica Sinica 2024;59(2):418-423
Twelve compounds were isolated from the ethyl acetate fraction of the 80% aqueous ethanol extract of the roots and stems of
4.Application of droplet digital PCR in etiological diagnosis of severe acute pancreatitis patients with suspected bloodstream infection
Xin-Yu WANG ; Gang LI ; Wen-Jian MAO ; Jie YANG ; Jing-Zhu ZHANG ; Lu KE ; Wei-Qin LI ; Zhi-Hui TONG
Chinese Journal of Infection Control 2024;23(1):9-15
Objective To explore the value of droplet digital polymerase chain reaction(ddPCR)in the etiological diagnosis of severe acute pancreatitis(SAP)patients with suspected bloodstream infection(BSI).Methods SAP patients admitted to the department of critical care medicine in a hospital July to September 2022 were enrolled.When BSI was suspected,venous blood was collected for both ddPCR detection and blood culture(BC)with antimi-crobial susceptibility testing(AST)simultaneously.The time required for two detection methods was recorded,and the detection results of ddPCR and BC were compared.The etiological diagnostic efficacy of ddPCR was calculated,and the correlation between the value of pathogen load detected by ddPCR and the level of infection parameters was explored.Results A total of 22 patients were included in the analysis,and 52 venous blood specimens were collec-ted for detection.BC revealed 17 positive specimens(32.7%)and 29 pathogenic strains,while ddPCR showed 41 positive specimens(78.8%)and 73 pathogenic strains.Detection time required for ddPCR was significantly lower than that of BC([0.16±0.03]days vs[5.92±1.20]days,P<0.001).Within the detection range of ddPCR and taking BC results as the gold standard,the sensitivity and specificity of ddPCR were 80.0%and 28.6%,respective-ly.With the combined assessment of BSI based on non-blood specimen microbial evidence within a week,the sensi-tivity and specificity of ddPCR detection increased to 91.9%and 76.9%,respectively.ddPCR detected resistance genes of blaKPC,blaNDM/IMP,VanA/VanM,and mecA from 19,9,6,and 5 specimens,respectively.Correlation analysis showed a positive correlation between pathogen load and levels of C-reactive protein as well as procalcitonin(r=0.347,0.414,P<0.05).Conclusion As a supplementary detection method for BC in BSI diagnosis,ddPCR has the advantages of higher sensitivity and shorter detection time,and is worthy of further exploration in clinical application.
5.Identification and quality evaluation of germplasm resources of commercial Acanthopanax senticosus based on DNA barcodes and HPLC
Shan-hu LIU ; Zhi-fei ZHANG ; Yu-ying HUANG ; Zi-qi LIU ; Wen-qin CHEN ; La-ha AMU ; Xin WANG ; Yue SHI ; Xiao-qin ZHANG ; Gao-jie HE ; Ke-lu AN ; Xiao-hui WANG ; Sheng-li WEI
Acta Pharmaceutica Sinica 2024;59(7):2171-2178
italic>Acanthopanax senticosus is one of the genuine regional herb in Northeast China. In this study, we identified the germplasm resources of commercial
6.Hypericin inhibits the expression of NLRP3 in microglia of Parkinson's disease mice and alleviates the damage of DA-ergic neurons
Li-Shan FAN ; Jia ZHANG ; Si-Xiang NIU ; Qi XIAO ; Hui-Jie FAN ; Lei XU ; Li-Xia YANG ; Lu JIA ; Shao-Chen QIN ; Bao-Guo XIAO ; Cun-Gen MA ; Zhi CHAI
The Chinese Journal of Clinical Pharmacology 2024;40(17):2523-2527
Objective To observe the intervention effect of hypericin(HYP)on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced Parkinson's disease(PD)mice model and its mechanism.Methods Thirty C57BL/6 mice were randomly divided into normal,model and experimental groups with 10 mice per group.PD mouse model was established after 7 days of intraperitoneal injection of MPTP,and drug intervention was carried out from the first day of modeling.Normal group and model group were intraperitoneally injected with 500 μL·kg·d-1 0.9%NaCl.The experimental group was intraperitoneally injected with 25 mg·kg·d-1 HYP.The three groups of rats were given the drug once each time for 14 days.The expression levels of tyrosine hydroxylase(TH),Nod-like receptor thermal protein domain protein 3(NLRP3)and ionized calcium binding adapter molecule 1(Iba1)in the striatum of nigra were detected by Western blot.Results The climbing time of normal,model and experimental groups was(5.35±0.43),(9.71±1.19)and(8.07±0.34)s;suspension scores were(2.92±0.15),(1.38±0.28)and(1.96±0.28)points;the relative expression levels of TH protein were 1.04±0.06,0.51±0.09 and 0.75±0.07;the relative expression levels of NLRP3 protein were 0.51±0.03,1.00±0.04 and 0.77±0.06;the relative expression levels of Iba1 protein were 0.68±0.10,1.30±0.28 and 0.89±0.05,respectively.The above indexes in the model group were statistically significant compared with the experimental group and the normal group(all P<0.01).Conclusion HYP plays a therapeutic role in PD by inhibiting the expression of NLRP3 inflammasome in PD mice.
7.Correlation between Combined Urinary Metal Exposure and Grip Strength under Three Statistical Models: A Cross-sectional Study in Rural Guangxi
Jian Yu LIANG ; Hui Jia RONG ; Xiu Xue WANG ; Sheng Jian CAI ; Dong Li QIN ; Mei Qiu LIU ; Xu TANG ; Ting Xiao MO ; Fei Yan WEI ; Xia Yin LIN ; Xiang Shen HUANG ; Yu Ting LUO ; Yu Ruo GOU ; Jing Jie CAO ; Wu Chu HUANG ; Fu Yu LU ; Jian QIN ; Yong Zhi ZHANG
Biomedical and Environmental Sciences 2024;37(1):3-18
Objective This study aimed to investigate the potential relationship between urinary metals copper (Cu), arsenic (As), strontium (Sr), barium (Ba), iron (Fe), lead (Pb) and manganese (Mn) and grip strength. Methods We used linear regression models, quantile g-computation and Bayesian kernel machine regression (BKMR) to assess the relationship between metals and grip strength.Results In the multimetal linear regression, Cu (β=-2.119), As (β=-1.318), Sr (β=-2.480), Ba (β=0.781), Fe (β= 1.130) and Mn (β=-0.404) were significantly correlated with grip strength (P < 0.05). The results of the quantile g-computation showed that the risk of occurrence of grip strength reduction was -1.007 (95% confidence interval:-1.362, -0.652; P < 0.001) when each quartile of the mixture of the seven metals was increased. Bayesian kernel function regression model analysis showed that mixtures of the seven metals had a negative overall effect on grip strength, with Cu, As and Sr being negatively associated with grip strength levels. In the total population, potential interactions were observed between As and Mn and between Cu and Mn (Pinteractions of 0.003 and 0.018, respectively).Conclusion In summary, this study suggests that combined exposure to metal mixtures is negatively associated with grip strength. Cu, Sr and As were negatively correlated with grip strength levels, and there were potential interactions between As and Mn and between Cu and Mn.
8.Nanomaterial-based Therapeutics for Biofilm-generated Bacterial Infections
Zhuo-Jun HE ; Yu-Ying CHEN ; Yang ZHOU ; Gui-Qin DAI ; De-Liang LIU ; Meng-De LIU ; Jian-Hui GAO ; Ze CHEN ; Jia-Yu DENG ; Guang-Yan LIANG ; Li WEI ; Peng-Fei ZHAO ; Hong-Zhou LU ; Ming-Bin ZHENG
Progress in Biochemistry and Biophysics 2024;51(7):1604-1617
Bacterial biofilms gave rise to persistent infections and multi-organ failure, thereby posing a serious threat to human health. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure, high adhesiveness and low drug permeability, and had been found in many human organs or tissues, such as the brain, heart, liver, spleen, lungs, kidneys, gastrointestinal tract, and skeleton. By releasing pro-inflammatory bacterial metabolites including endotoxins, exotoxins and interleukin, biofilms stimulated the body’s immune system to secrete inflammatory factors. These factors triggered local inflammation and chronic infections. Those were the key reason for the failure of traditional clinical drug therapy for infectious diseases.In order to cope with the increasingly severe drug-resistant infections, it was urgent to develop new therapeutic strategies for bacterial-biofilm eradication and anti-bacterial infections. Based on the nanoscale structure and biocompatible activity, nanobiomaterials had the advantages of specific targeting, intelligent delivery, high drug loading and low toxicity, which could realize efficient intervention and precise treatment of drug-resistant bacterial biofilms. This paper highlighted multiple strategies of biofilms eradication based on nanobiomaterials. For example, nanobiomaterials combined with EPS degrading enzymes could be used for targeted hydrolysis of bacterial biofilms, and effectively increased the drug enrichment within biofilms. By loading quorum sensing inhibitors, nanotechnology was also an effective strategy for eradicating bacterial biofilms and recovering the infectious symptoms. Nanobiomaterials could intervene the bacterial metabolism and break the bacterial survival homeostasis by blocking the uptake of nutrients. Moreover, energy-driven micro-nano robotics had shown excellent performance in active delivery and biofilm eradication. Micro-nano robots could penetrate physiological barriers by exogenous or endogenous driving modes such as by biological or chemical methods, ultrasound, and magnetic field, and deliver drugs to the infection sites accurately. Achieving this using conventional drugs was difficult. Overall, the paper described the biological properties and drug-resistant molecular mechanisms of bacterial biofilms, and highlighted therapeutic strategies from different perspectives by nanobiomaterials, such as dispersing bacterial mature biofilms, blocking quorum sensing, inhibiting bacterial metabolism, and energy driving penetration. In addition, we presented the key challenges still faced by nanobiomaterials in combating bacterial biofilm infections. Firstly, the dense structure of EPS caused biofilms spatial heterogeneity and metabolic heterogeneity, which created exacting requirements for the design, construction and preparation process of nanobiomaterials. Secondly, biofilm disruption carried the risk of spread and infection the pathogenic bacteria, which might lead to other infections. Finally, we emphasized the role of nanobiomaterials in the development trends and translational prospects in biofilm treatment.
9.Effect and possible mechanism of Wuzi Yanzong Pill on motor function of neurons in Parkinson's disease mice
Tao PAN ; Qi XIAO ; Hui-Jie FAN ; Lei XU ; Lu JIA ; Shao-Chen QIN ; Li-Ran WANG ; Cun-Gen MA ; Bo ZHANG ; Zhi CHAI
Medical Journal of Chinese People's Liberation Army 2024;49(5):550-556
Objective To observe the effects of Wuzi Yanzong Pill(WYP)on motor function in a mouse model of Parkinson's disease(PD)and to explore its potential mechanisms.Methods Twenty-four male C57BL/6 mice were randomly divided into control group,model group and WYP group,with 8 mice in each group.Mice in model and WYP group were intraperitoneally injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine for 7 consecutive days to establish a PD model.From the 1st day of model preparation,mice in WYP group were gavaged with WYP solution[16 g/(kg·d)]twice daily for 14 consecutive days.At the same time,mice in control group and model group were gavaged with 0.9%NaCl solution[50 ml/(kg·d)]twice a day.Gait experiment was utilized to assess the behavioral performance of mice in each group.Immunofluorescence staining was conducted to detect the number of tyrosine hydroxylase(TH)-positive cells in the substantia nigra region,the fluorescence intensity of nuclear factor E2-related factor 2(Nrf2),and the number of NeuN neurons co-labeled with Nrf2 in each group.Western blotting was employed to determine the expression levels of TH,Kelch-like ECH-associated protein 1(Keap-1),Nrf2,and heme oxygenase-1(HO-1)in the brain tissue of mice in each group.Results The gait experiment results showed that,compared with control group,standing time of the left front paw,right front paw,left hind paw,and right hind paw of the mice in model group was significantly shortened(P<0.01),while swinging time of the left front paw,right front paw,left hind paw,and right hind paw was significantly prolonged(P<0.05).Compared with model group,standing time of the left front paw and right hind paw of the mice in WYP group was significantly prolonged(P<0.05),while swing time of the left front paw and right front paw was significantly shortened(P<0.05).Immunofluorescence staining and Western blotting results showed that,compared with control group,in model group the number of TH-positive cells,average fluorescence intensity of Nrf2,and HO-1 levels decreased(P<0.01),while the Keap-1 protein level increased(P<0.01),and the number of Nrf2 expression on NeuN neurons decreased(P<0.001).Compared with model group,the number of TH-positive cells,average fluorescence intensity of Nrf2,HO-1 level,and the number of Nrf2 expression on NeuN neurons in the brain tissue of mice in WYP group increased(P<0.05),while Keap-1 protein level decreased(P<0.05).Conclusions WYP could alleviate the motor dysfunction and protect dopaminergic neurons in PD mice.The underlying mechanism may be related to the regulation of Keap-1/Nrf2/HO-1 pathway to inhibit oxidative stress response.
10.Research progress on the impact of lipid metabolism on endometrial receptivity and embryo implantation
Li-Na MA ; Ying QIN ; Ke-Hua WANG ; Cong-Hui PANG ; Li-Ge LU ; Wen-Xian YUAN ; Duo-Jia ZHANG ; Xiao-Ke WU
Medical Journal of Chinese People's Liberation Army 2024;49(9):1088-1093
Lipids,including fats(triglycerides)and lipoids(phospholipids and sterols),not only serve as an energy source for the body but also play a pivotal role throughout the reproductive process,particularly in the establishment and maintenance of early pregnancy.This encompasses the regulate of early embryonic development and uterine tolerance,and the facilitation of embryo implantation.Given the diversity of lipids,this review focuses on extensively studied lipid mediators such as polyunsaturated fatty acids,endocannabinoids,prostaglandins,lysophosphatidic acid,sphingolipids and steroid hormones.It systematically elaborates on the regulatory effects of fatty acid,phospholipid,and cholesterol metabolism on the formation of endometrial receptivity and embryo implantation,as well as the potential underlying mechanisms.The review aims to provide new insights and feasible intervention approaches for predicting and improving the outcomes of natural pregnancy and/or assisted reproductive technology.

Result Analysis
Print
Save
E-mail