1.A new suberin from roots of Ephedra sinica Stapf
Bo-wen ZHANG ; Meng LI ; Xiao-lan WANG ; Ying YANG ; Shi-qi ZHOU ; Si-qi TAO ; Meng YANG ; Deng-hui ZHU ; Ya-tong XU ; Wei-sheng FENG ; Xiao-ke ZHENG
Acta Pharmaceutica Sinica 2024;59(3):661-666
Six compounds were isolated from the roots of
2.Expert consensus on clinical application of 177Lu-prostate specific membrane antigen radio-ligand therapy in prostate cancer
Guobing LIU ; Weihai ZHUO ; Yushen GU ; Zhi YANG ; Yue CHEN ; Wei FAN ; Jianming GUO ; Jian TAN ; Xiaohua ZHU ; Li HUO ; Xiaoli LAN ; Biao LI ; Weibing MIAO ; Shaoli SONG ; Hao XU ; Rong TIAN ; Quanyong LUO ; Feng WANG ; Xuemei WANG ; Aimin YANG ; Dong DAI ; Zhiyong DENG ; Jinhua ZHAO ; Xiaoliang CHEN ; Yan FAN ; Zairong GAO ; Xingmin HAN ; Ningyi JIANG ; Anren KUANG ; Yansong LIN ; Fugeng LIU ; Cen LOU ; Xinhui SU ; Lijun TANG ; Hui WANG ; Xinlu WANG ; Fuzhou YANG ; Hui YANG ; Xinming ZHAO ; Bo YANG ; Xiaodong HUANG ; Jiliang CHEN ; Sijin LI ; Jing WANG ; Yaming LI ; Hongcheng SHI
Chinese Journal of Clinical Medicine 2024;31(5):844-850,封3
177Lu-prostate specific membrane antigen(PSMA)radio-ligand therapy has been approved abroad for advanced prostate cancer and has been in several clinical trials in China.Based on domestic clinical practice and experimental data and referred to international experience and viewpoints,the expert group forms a consensus on the clinical application of 177Lu-PSMA radio-ligand therapy in prostate cancer to guide clinical practice.
3.Sensitivity of colorectal cancer organoids to hyperthermic intraperitoneal chemotherapy with lobaplatin
Duo LIU ; Hui WANG ; Weihao DENG ; Jianqiang LAN ; Zhiwen SONG ; Yu ZHU ; Jianling JING ; Jian CAI
Chinese Journal of Gastrointestinal Surgery 2024;27(5):486-494
Objective:To investigate the sensitivity of tumor organoids derived from samples of colorectal cancer to lobaplatin and oxaliplatin hyperthermic perfusion in vitro and to assist clinical development of hyperthermic intraperitoneal chemotherapy. Method:Tumor samples and relevant clinical data were collected from patients with pathologically confirmed colorectal cancer in the Sixth Affiliated Hospital of Sun Yat-sen University from July 2021 to December 2022. Organoids were cultured and tumor tissue were passaged. In vitro hyperthermic perfusion experiments were performed on organoids with good viability. Firstly, 10 organoids were treated with oxaliplatin and lobaplatin at the following six concentrations: 1 000, 250, 62.5, 15.6, 3.9, and 0.98 μmol/L. The organoids were exposed to oxaliplatin at 42℃ for 30 minutes and to lobaplatin at 42℃ for 60 minutes. Dose-response curves of responses to in vitro hyperthermic perfusion with these two drugs were constructed and evaluated. Clinical doses of oxaliplatin and lobaplatin were further tested on 30 organoids. This testing revealed oxaliplatin was effective at 579 μmol/L at a hyperthermic perfusion temperature of 42℃ for 30 min and lobaplatin was effective at 240 μmol/L at a hyperthermic perfusion temperature of 42℃ for 60 minutes. Result:Thirty-two tumor organoids were cultured from samples of colorectal cancer. The median concentration required for oxaliplatin to eliminate 50% of tumor cells (IC50) was 577.45 μmol/L (IQR: 1846.09 μmol/L). The median IC50 for lobaplatin was 85.04 μmol/L (IQR: 305.01 μmol/L).The difference between the two groups was not statistically significant ( Z=1.784, P=0.084). In seven of 10 organoids, lobaplatin showed a greater IC50 after in vitro hyperthermic perfusion than did oxaliplatin. Testing of 30 organoids with clinical doses of oxaliplatin and lobaplatin revealed that oxaliplatin achieved an average inhibition rate of 39.6% (95%CI: 32.1%?47.0%), whereas the average rate of inhibition for lobaplatin was 89.7% (95%CI: 87.0%?92.3%): this difference is statistically significant ( t=?15.282, P<0.001). Conclusion:The rate of inhibition achieved by hyperthermic perfusion of lobaplatin in vitro is better than that achieved by hyperthermic perfusion with oxaliplatin. Lobaplatin is more effective than oxaliplatin when administered by hyperthermic intraperitoneal perfusion and therefore has the potential to replace oxaliplatin in this setting.
4.Sensitivity of colorectal cancer organoids to hyperthermic intraperitoneal chemotherapy with lobaplatin
Duo LIU ; Hui WANG ; Weihao DENG ; Jianqiang LAN ; Zhiwen SONG ; Yu ZHU ; Jianling JING ; Jian CAI
Chinese Journal of Gastrointestinal Surgery 2024;27(5):486-494
Objective:To investigate the sensitivity of tumor organoids derived from samples of colorectal cancer to lobaplatin and oxaliplatin hyperthermic perfusion in vitro and to assist clinical development of hyperthermic intraperitoneal chemotherapy. Method:Tumor samples and relevant clinical data were collected from patients with pathologically confirmed colorectal cancer in the Sixth Affiliated Hospital of Sun Yat-sen University from July 2021 to December 2022. Organoids were cultured and tumor tissue were passaged. In vitro hyperthermic perfusion experiments were performed on organoids with good viability. Firstly, 10 organoids were treated with oxaliplatin and lobaplatin at the following six concentrations: 1 000, 250, 62.5, 15.6, 3.9, and 0.98 μmol/L. The organoids were exposed to oxaliplatin at 42℃ for 30 minutes and to lobaplatin at 42℃ for 60 minutes. Dose-response curves of responses to in vitro hyperthermic perfusion with these two drugs were constructed and evaluated. Clinical doses of oxaliplatin and lobaplatin were further tested on 30 organoids. This testing revealed oxaliplatin was effective at 579 μmol/L at a hyperthermic perfusion temperature of 42℃ for 30 min and lobaplatin was effective at 240 μmol/L at a hyperthermic perfusion temperature of 42℃ for 60 minutes. Result:Thirty-two tumor organoids were cultured from samples of colorectal cancer. The median concentration required for oxaliplatin to eliminate 50% of tumor cells (IC50) was 577.45 μmol/L (IQR: 1846.09 μmol/L). The median IC50 for lobaplatin was 85.04 μmol/L (IQR: 305.01 μmol/L).The difference between the two groups was not statistically significant ( Z=1.784, P=0.084). In seven of 10 organoids, lobaplatin showed a greater IC50 after in vitro hyperthermic perfusion than did oxaliplatin. Testing of 30 organoids with clinical doses of oxaliplatin and lobaplatin revealed that oxaliplatin achieved an average inhibition rate of 39.6% (95%CI: 32.1%?47.0%), whereas the average rate of inhibition for lobaplatin was 89.7% (95%CI: 87.0%?92.3%): this difference is statistically significant ( t=?15.282, P<0.001). Conclusion:The rate of inhibition achieved by hyperthermic perfusion of lobaplatin in vitro is better than that achieved by hyperthermic perfusion with oxaliplatin. Lobaplatin is more effective than oxaliplatin when administered by hyperthermic intraperitoneal perfusion and therefore has the potential to replace oxaliplatin in this setting.
5.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
6.Prevalence and treatment of anemia in chronic kidney disease patients based on regional medical big data.
Yang Fan CHAI ; Hong Bo LIN ; Guo Hui DING ; Jin Wei WANG ; Huai Yu WANG ; Su Yuan PENG ; Bi Xia GAO ; Xin Wei DENG ; Gui Lan KONG ; Bei Yan BAO ; Lu Xia ZHANG
Chinese Journal of Epidemiology 2023;44(7):1046-1053
Objective: To assess the prevalence, risk factors and treatment of anemia in patients with chronic kidney disease (CKD). Methods: A descriptive method was used to analyze the prevalence and treatment of anemia in CKD patients based on regional health data in Yinzhou District of Ningbo during 2012-2018. The multivariate logistic regression analysis was used to identify independent influence factors of anemia in the CKD patients. Results: In 52 619 CKD patients, 15 639 suffered from by anemia (29.72%), in whom 5 461 were men (26.41%) and 10 178 were women (31.87%), and anemia prevalence was higher in women than in men, the difference was significant (P<0.001). The prevalence of anemia increased with stage of CKD (24.77% in stage 1 vs. 69.42% in stage 5, trend χ2 test P<0.001). Multivariate logistic regression analysis revealed that being women (aOR=1.57, 95%CI: 1.50-1.63), CKD stage (stage 2: aOR=1.10, 95%CI: 1.04-1.16;stage 3: aOR=2.28,95%CI: 2.12-2.44;stage 4: aOR=4.49,95%CI :3.79-5.32;stage 5: aOR=6.31,95%CI: 4.74-8.39), age (18-30 years old: aOR=2.40,95%CI: 2.24-2.57, 61-75 years old: aOR=1.35,95%CI:1.28-1.42, ≥76 years old: aOR=2.37,95%CI:2.20-2.55), BMI (<18.5 kg/m2:aOR=1.29,95%CI: 1.18-1.41;23.0-24.9 kg/m2:aOR=0.79,95%CI: 0.75-0.83;≥25.0 kg/m2:aOR=0.70,95%CI: 0.66-0.74), abdominal obesity (aOR=0.91, 95%CI: 0.86-0.96), chronic obstructive pulmonary disease (aOR=1.15, 95%CI: 1.09-1.22), cancer (aOR=3.03, 95%CI: 2.84-3.23), heart failure (aOR=1.44, 95%CI: 1.35-1.54) and myocardial infarction (aOR=1.54, 95%CI:1.16-2.04) were independent risk factors of anemia in CKD patients. Among stage 3-5 CKD patients with anemia, 12.03% received iron therapy, and 4.78% received treatment with erythropoiesis-stimulating agent (ESA) within 12 months after anemia was diagnosed. Conclusions: The prevalence of anemia in CKD patients was high in Yinzhou. However, the treatment rate of iron therapy and ESA were low. More attention should be paid to the anemia management and treatment in CKD patients.
7.A multicenter epidemiological study of acute bacterial meningitis in children.
Cai Yun WANG ; Hong Mei XU ; Jiao TIAN ; Si Qi HONG ; Gang LIU ; Si Xuan WANG ; Feng GAO ; Jing LIU ; Fu Rong LIU ; Hui YU ; Xia WU ; Bi Quan CHEN ; Fang Fang SHEN ; Guo ZHENG ; Jie YU ; Min SHU ; Lu LIU ; Li Jun DU ; Pei LI ; Zhi Wei XU ; Meng Quan ZHU ; Li Su HUANG ; He Yu HUANG ; Hai Bo LI ; Yuan Yuan HUANG ; Dong WANG ; Fang WU ; Song Ting BAI ; Jing Jing TANG ; Qing Wen SHAN ; Lian Cheng LAN ; Chun Hui ZHU ; Yan XIONG ; Jian Mei TIAN ; Jia Hui WU ; Jian Hua HAO ; Hui Ya ZHAO ; Ai Wei LIN ; Shuang Shuang SONG ; Dao Jiong LIN ; Qiong Hua ZHOU ; Yu Ping GUO ; Jin Zhun WU ; Xiao Qing YANG ; Xin Hua ZHANG ; Ying GUO ; Qing CAO ; Li Juan LUO ; Zhong Bin TAO ; Wen Kai YANG ; Yong Kang ZHOU ; Yuan CHEN ; Li Jie FENG ; Guo Long ZHU ; Yan Hong ZHANG ; Ping XUE ; Xiao Qin LI ; Zheng Zhen TANG ; De Hui ZHANG ; Xue Wen SU ; Zheng Hai QU ; Ying ZHANG ; Shi Yong ZHAO ; Zheng Hong QI ; Lin PANG ; Cai Ying WANG ; Hui Ling DENG ; Xing Lou LIU ; Ying Hu CHEN ; Sainan SHU
Chinese Journal of Pediatrics 2022;60(10):1045-1053
Objective: To analyze the clinical epidemiological characteristics including composition of pathogens , clinical characteristics, and disease prognosis acute bacterial meningitis (ABM) in Chinese children. Methods: A retrospective analysis was performed on the clinical and laboratory data of 1 610 children <15 years of age with ABM in 33 tertiary hospitals in China from January 2019 to December 2020. Patients were divided into different groups according to age,<28 days group, 28 days to <3 months group, 3 months to <1 year group, 1-<5 years of age group, 5-<15 years of age group; etiology confirmed group and clinically diagnosed group according to etiology diagnosis. Non-numeric variables were analyzed with the Chi-square test or Fisher's exact test, while non-normal distrituction numeric variables were compared with nonparametric test. Results: Among 1 610 children with ABM, 955 were male and 650 were female (5 cases were not provided with gender information), and the age of onset was 1.5 (0.5, 5.5) months. There were 588 cases age from <28 days, 462 cases age from 28 days to <3 months, 302 cases age from 3 months to <1 year of age group, 156 cases in the 1-<5 years of age and 101 cases in the 5-<15 years of age. The detection rates were 38.8% (95/245) and 31.5% (70/222) of Escherichia coli and 27.8% (68/245) and 35.1% (78/222) of Streptococcus agalactiae in infants younger than 28 days of age and 28 days to 3 months of age; the detection rates of Streptococcus pneumonia, Escherichia coli, and Streptococcus agalactiae were 34.3% (61/178), 14.0% (25/178) and 13.5% (24/178) in the 3 months of age to <1 year of age group; the dominant pathogens were Streptococcus pneumoniae and the detection rate were 67.9% (74/109) and 44.4% (16/36) in the 1-<5 years of age and 5-<15 years of age . There were 9.7% (19/195) strains of Escherichia coli producing ultra-broad-spectrum β-lactamases. The positive rates of cerebrospinal fluid (CSF) culture and blood culture were 32.2% (515/1 598) and 25.0% (400/1 598), while 38.2% (126/330)and 25.3% (21/83) in CSF metagenomics next generation sequencing and Streptococcus pneumoniae antigen detection. There were 4.3% (32/790) cases of which CSF white blood cell counts were normal in etiology confirmed group. Among 1 610 children with ABM, main intracranial imaging complications were subdural effusion and (or) empyema in 349 cases (21.7%), hydrocephalus in 233 cases (14.5%), brain abscess in 178 cases (11.1%), and other cerebrovascular diseases, including encephalomalacia, cerebral infarction, and encephalatrophy, in 174 cases (10.8%). Among the 166 cases (10.3%) with unfavorable outcome, 32 cases (2.0%) died among whom 24 cases died before 1 year of age, and 37 cases (2.3%) had recurrence among whom 25 cases had recurrence within 3 weeks. The incidences of subdural effusion and (or) empyema, brain abscess and ependymitis in the etiology confirmed group were significantly higher than those in the clinically diagnosed group (26.2% (207/790) vs. 17.3% (142/820), 13.0% (103/790) vs. 9.1% (75/820), 4.6% (36/790) vs. 2.7% (22/820), χ2=18.71, 6.20, 4.07, all P<0.05), but there was no significant difference in the unfavorable outcomes, mortility, and recurrence between these 2 groups (all P>0.05). Conclusions: The onset age of ABM in children is usually within 1 year of age, especially <3 months. The common pathogens in infants <3 months of age are Escherichia coli and Streptococcus agalactiae, and the dominant pathogen in infant ≥3 months is Streptococcus pneumoniae. Subdural effusion and (or) empyema and hydrocephalus are common complications. ABM should not be excluded even if CSF white blood cell counts is within normal range. Standardized bacteriological examination should be paid more attention to increase the pathogenic detection rate. Non-culture CSF detection methods may facilitate the pathogenic diagnosis.
Adolescent
;
Brain Abscess
;
Child
;
Child, Preschool
;
Escherichia coli
;
Female
;
Humans
;
Hydrocephalus
;
Infant
;
Infant, Newborn
;
Male
;
Meningitis, Bacterial/epidemiology*
;
Retrospective Studies
;
Streptococcus agalactiae
;
Streptococcus pneumoniae
;
Subdural Effusion
;
beta-Lactamases
8.Evaluation of efficiency of different anti-cysticercus antibody test kits for serodiagnosis of cysticercosis
Ya-lan ZHANG ; Tian-tian JIANG ; Peng-hui JI ; Zhi-quan HE ; Xi CHEN ; Yang HONG ; Dong-yang ZHAO ; Yan DENG ; Wei-qi CHEN ; Hong-wei ZHANG
Chinese Journal of Schistosomiasis Control 2022;34(1):36-40
Objective To evaluate the diagnostic efficiency of four anti-cysticercus IgG, IgG4 or IgM antibody test kits (enzyme-linked immunosorbent assay, ELISA) by different manufacturers, so as to provide insights into the epidemiological investigation and clinical detection of cysticercosis. Methods Forty serum samples from cerebral cysticercosis patients, 100 serum samples from healthy volunteers, 30 serum samples from paragonimiasis skrjabini patients, 17 serum samples from cystic echinococcosis and 19 serum samples from subcutaneous or cerebral sparganosis patients were collected and detected using anti-cysticercus IgG, IgG4 or IgM antibody test kits (brand A) and the anti-cysticercus IgG antibody test kit (brand B). The sensitivity, specificity and false negative rate of the four kits for detection of cysticercosis were estimated. Results The anti-cysticercus IgG, IgG4 or IgM antibody test kits (brand A) showed 95.00% (38/40), 87.50% (35/40), 7.50% (3/40) sensitivities and 98.00% (98/100), 100.00% (100/100) and 100.00% (100/100) for detection of cysticercosis, while the anti-cysticercus IgG antibody test kit (brand B) presented a 75.00% (30/40) sensitivity and 100.00% (100/100) specificity for detection of cysticercosis. The sensitivity for detection of cysticercosis was significantly higher by the anti-cysticercus IgG antibody test kit (brand A) than by the anti-cysticercus IgG antibody test kit (brand B) (χ2 = 6.28, P < 0.05); however, no significant difference was seen in the specificity by two kits (χ2 = 2.01, P > 0.05). The four ELISA kits showed overall false positive rates of 37.88% (25/66), 22.73% (15/66), 62.12% (41/66) and 15.15% (10/66) for detection of paragonimiasis, echinococcosis and sparganosis (χ2 = 37.61, P < 0.05), and the anti-cysticercus IgG antibody test kit (brand A) presented the highest overall false positive rate for detection of paragonimiasis, echinococcosis and sparganosis (χ2 = 7.56, P’ < 0.008), while a higher overall false positive rate was seen for detection of paragonimiasis, echinococcosis and sparganosis by the anti-cysticercus IgG antibody test kit (brand A) than by the anti-cysticercus IgG antibody test kit (brand B) (χ2 = 8.75, P’ < 0.008). The four ELISA kits showed false positive rates of 40.00% (12/30), 16.67% (5/30), 76.67% (23/30) and 13.33% (4/30) for detection of paragonimiasis (χ2 = 32.88, P < 0.05) and 21.05% (4/19), 26.32% (5/19), 73.68% (14/19) and 15.79% (3/19) for detection of sparganosis (χ2 = 19.97, P < 0.05), and the highest false positive rates were found by the anti-cysticercus IgM antibody test kit (brand A) for detection of paragonimiasis and sparganosis (all P’ < 0.008). However, the four ELISA kits showed comparable false positive rates of 52.94% (9/17), 29.41% (5/17), 23.53% (4/17) and 17.65% (3/17) for detection of echinococcosis (χ2 = 8.24, P > 0.05). In addition, the anti-cysticercus IgM anti-body test kit (brand A) showed false positive rates of 76.67% (23/30), 23.53% (4/17) and 73.68% (14/19) for detection of paragonimiasis, echinococcosis and sparganosis (χ2 = 14.537, P < 0.05), with the lowest false positive rate seen for detection of echinococcosis (χ2 = 14.537, P’ < 0.014), while no significant differences were seen in the false positive rate for detection of paragonimiasis, echinococcosis and sparganosis by other three ELISA kits (all P > 0.05). Conclusions The four anti-cysticercus IgG, IgG4 or IgM antibody test kits exhibit various efficiencies for serodiagnosis of cysticercosis. The anti-cysticercus IgG antibody test kit (brand A) has a high sensitivity for serodiagnosis of cysticercosis; however, it still needs to solve the problems of cross-reaction with other parasitic diseases and stability.
9.Genetic diversity analysis of forty-three insertion/deletion loci for forensic individual identification in Han Chinese from Beijing based on a novel panel.
Congying ZHAO ; Jinlong YANG ; Hui XU ; Shuyan MEI ; Yating FANG ; Qiong LAN ; Yajun DENG ; Bofeng ZHU
Journal of Zhejiang University. Science. B 2022;23(3):241-248
Due to the virtues of no stutter peaks, low rates of mutation, and short amplicon sizes, insertion/deletion (InDel) polymorphism is an indispensable tool for analyzing degraded DNA samples from crime scenes for human identifications (Wang et al., 2021). Herein, a self-developed panel of 43 InDel loci constructed previously by our group was utilized to evaluate the genetic diversities and explore the genetic background of the Han Chinese from Beijing (HCB) including 301 random healthy individuals. The lengths of amplicons at 43 InDel loci in this panel ranged from 87 to 199 bp, which indicated that the panel could be used as an effective tool to utilize highly degraded DNA samples for human identity testing. The loci in this panel were validated and performed well for forensic degraded DNA samples (Jin et al., 2021). The combined discrimination power (PD) and combined probability of exclusion (PE) values in this panel indicated that the 43 InDel loci could be used as the candidate markers in personal identification and parentage testing of HCB. In addition, population genetic relationships between the HCB and 26 reference populations from five continents based on 19 overlapped InDel loci were displayed by constructing a phylogenetic tree, principal component analysis (PCA), and population genetic structure analysis. The results illustrated that the HCB had closer genetic relationships with the Han populations from Chinese different regions.
Beijing
;
China
;
Forensic Genetics/methods*
;
Gene Frequency
;
Genetics, Population
;
Humans
;
INDEL Mutation
;
Phylogeny
10.Course of disease and related epidemiological parameters of COVID-19: a prospective study based on contact tracing cohort.
Yan ZHOU ; Wen Jia LIANG ; Zi Hui CHEN ; Tao LIU ; Tie SONG ; Shao Wei CHEN ; Ping WANG ; Jia Ling LI ; Yun Hua LAN ; Ming Ji CHENG ; Jin Xu HUANG ; Ji Wei NIU ; Jian Peng XIAO ; Jian Xiong HU ; Li Feng LIN ; Qiong HUANG ; Ai Ping DENG ; Xiao Hua TAN ; Min KANG ; Gui Min CHEN ; Mo Ran DONG ; Hao Jie ZHONG ; Wen Jun MA
Chinese Journal of Preventive Medicine 2022;56(4):474-478
Objective: To analyze the course of disease and epidemiological parameters of COVID-19 and provide evidence for making prevention and control strategies. Methods: To display the distribution of course of disease of the infectors who had close contacts with COVID-19 cases from January 1 to March 15, 2020 in Guangdong Provincial, the models of Lognormal, Weibull and gamma distribution were applied. A descriptive analysis was conducted on the basic characteristics and epidemiological parameters of course of disease. Results: In total, 515 of 11 580 close contacts were infected, with an attack rate about 4.4%, including 449 confirmed cases and 66 asymptomatic cases. Lognormal distribution was fitting best for latent period, incubation period, pre-symptomatic infection period of confirmed cases and infection period of asymptomatic cases; Gamma distribution was fitting best for infectious period and clinical symptom period of confirmed cases; Weibull distribution was fitting best for latent period of asymptomatic cases. The latent period, incubation period, pre-symptomatic infection period, infectious period and clinical symptoms period of confirmed cases were 4.50 (95%CI:3.86-5.13) days, 5.12 (95%CI:4.63-5.62) days, 0.87 (95%CI:0.67-1.07) days, 11.89 (95%CI:9.81-13.98) days and 22.00 (95%CI:21.24-22.77) days, respectively. The latent period and infectious period of asymptomatic cases were 8.88 (95%CI:6.89-10.86) days and 6.18 (95%CI:1.89-10.47) days, respectively. Conclusion: The estimated course of COVID-19 and related epidemiological parameters are similar to the existing data.
COVID-19
;
Cohort Studies
;
Contact Tracing
;
Humans
;
Incidence
;
Prospective Studies

Result Analysis
Print
Save
E-mail