1.Identification and Potential Clinical Utility of Common Genetic Variants in Gestational Diabetes among Chinese Pregnant Women
Claudia Ha-ting TAM ; Ying WANG ; Chi Chiu WANG ; Lai Yuk YUEN ; Cadmon King-poo LIM ; Junhong LENG ; Ling WU ; Alex Chi-wai NG ; Yong HOU ; Kit Ying TSOI ; Hui WANG ; Risa OZAKI ; Albert Martin LI ; Qingqing WANG ; Juliana Chung-ngor CHAN ; Yan Chou YE ; Wing Hung TAM ; Xilin YANG ; Ronald Ching-wan MA
Diabetes & Metabolism Journal 2025;49(1):128-143
Background:
The genetic basis for hyperglycaemia in pregnancy remain unclear. This study aimed to uncover the genetic determinants of gestational diabetes mellitus (GDM) and investigate their applications.
Methods:
We performed a meta-analysis of genome-wide association studies (GWAS) for GDM in Chinese women (464 cases and 1,217 controls), followed by de novo replications in an independent Chinese cohort (564 cases and 572 controls) and in silico replication in European (12,332 cases and 131,109 controls) and multi-ethnic populations (5,485 cases and 347,856 controls). A polygenic risk score (PRS) was derived based on the identified variants.
Results:
Using the genome-wide scan and candidate gene approaches, we identified four susceptibility loci for GDM. These included three previously reported loci for GDM and type 2 diabetes mellitus (T2DM) at MTNR1B (rs7945617, odds ratio [OR], 1.64; 95% confidence interval [CI],1.38 to 1.96]), CDKAL1 (rs7754840, OR, 1.33; 95% CI, 1.13 to 1.58), and INS-IGF2-KCNQ1 (rs2237897, OR, 1.48; 95% CI, 1.23 to 1.79), as well as a novel genome-wide significant locus near TBR1-SLC4A10 (rs117781972, OR, 2.05; 95% CI, 1.61 to 2.62; Pmeta=7.6×10-9), which has not been previously reported in GWAS for T2DM or glycaemic traits. Moreover, we found that women with a high PRS (top quintile) had over threefold (95% CI, 2.30 to 4.09; Pmeta=3.1×10-14) and 71% (95% CI, 1.08 to 2.71; P=0.0220) higher risk for GDM and abnormal glucose tolerance post-pregnancy, respectively, compared to other individuals.
Conclusion
Our results indicate that the genetic architecture of glucose metabolism exhibits both similarities and differences between the pregnant and non-pregnant states. Integrating genetic information can facilitate identification of pregnant women at a higher risk of developing GDM or later diabetes.
2.Identification and Potential Clinical Utility of Common Genetic Variants in Gestational Diabetes among Chinese Pregnant Women
Claudia Ha-ting TAM ; Ying WANG ; Chi Chiu WANG ; Lai Yuk YUEN ; Cadmon King-poo LIM ; Junhong LENG ; Ling WU ; Alex Chi-wai NG ; Yong HOU ; Kit Ying TSOI ; Hui WANG ; Risa OZAKI ; Albert Martin LI ; Qingqing WANG ; Juliana Chung-ngor CHAN ; Yan Chou YE ; Wing Hung TAM ; Xilin YANG ; Ronald Ching-wan MA
Diabetes & Metabolism Journal 2025;49(1):128-143
Background:
The genetic basis for hyperglycaemia in pregnancy remain unclear. This study aimed to uncover the genetic determinants of gestational diabetes mellitus (GDM) and investigate their applications.
Methods:
We performed a meta-analysis of genome-wide association studies (GWAS) for GDM in Chinese women (464 cases and 1,217 controls), followed by de novo replications in an independent Chinese cohort (564 cases and 572 controls) and in silico replication in European (12,332 cases and 131,109 controls) and multi-ethnic populations (5,485 cases and 347,856 controls). A polygenic risk score (PRS) was derived based on the identified variants.
Results:
Using the genome-wide scan and candidate gene approaches, we identified four susceptibility loci for GDM. These included three previously reported loci for GDM and type 2 diabetes mellitus (T2DM) at MTNR1B (rs7945617, odds ratio [OR], 1.64; 95% confidence interval [CI],1.38 to 1.96]), CDKAL1 (rs7754840, OR, 1.33; 95% CI, 1.13 to 1.58), and INS-IGF2-KCNQ1 (rs2237897, OR, 1.48; 95% CI, 1.23 to 1.79), as well as a novel genome-wide significant locus near TBR1-SLC4A10 (rs117781972, OR, 2.05; 95% CI, 1.61 to 2.62; Pmeta=7.6×10-9), which has not been previously reported in GWAS for T2DM or glycaemic traits. Moreover, we found that women with a high PRS (top quintile) had over threefold (95% CI, 2.30 to 4.09; Pmeta=3.1×10-14) and 71% (95% CI, 1.08 to 2.71; P=0.0220) higher risk for GDM and abnormal glucose tolerance post-pregnancy, respectively, compared to other individuals.
Conclusion
Our results indicate that the genetic architecture of glucose metabolism exhibits both similarities and differences between the pregnant and non-pregnant states. Integrating genetic information can facilitate identification of pregnant women at a higher risk of developing GDM or later diabetes.
3.Identification and Potential Clinical Utility of Common Genetic Variants in Gestational Diabetes among Chinese Pregnant Women
Claudia Ha-ting TAM ; Ying WANG ; Chi Chiu WANG ; Lai Yuk YUEN ; Cadmon King-poo LIM ; Junhong LENG ; Ling WU ; Alex Chi-wai NG ; Yong HOU ; Kit Ying TSOI ; Hui WANG ; Risa OZAKI ; Albert Martin LI ; Qingqing WANG ; Juliana Chung-ngor CHAN ; Yan Chou YE ; Wing Hung TAM ; Xilin YANG ; Ronald Ching-wan MA
Diabetes & Metabolism Journal 2025;49(1):128-143
Background:
The genetic basis for hyperglycaemia in pregnancy remain unclear. This study aimed to uncover the genetic determinants of gestational diabetes mellitus (GDM) and investigate their applications.
Methods:
We performed a meta-analysis of genome-wide association studies (GWAS) for GDM in Chinese women (464 cases and 1,217 controls), followed by de novo replications in an independent Chinese cohort (564 cases and 572 controls) and in silico replication in European (12,332 cases and 131,109 controls) and multi-ethnic populations (5,485 cases and 347,856 controls). A polygenic risk score (PRS) was derived based on the identified variants.
Results:
Using the genome-wide scan and candidate gene approaches, we identified four susceptibility loci for GDM. These included three previously reported loci for GDM and type 2 diabetes mellitus (T2DM) at MTNR1B (rs7945617, odds ratio [OR], 1.64; 95% confidence interval [CI],1.38 to 1.96]), CDKAL1 (rs7754840, OR, 1.33; 95% CI, 1.13 to 1.58), and INS-IGF2-KCNQ1 (rs2237897, OR, 1.48; 95% CI, 1.23 to 1.79), as well as a novel genome-wide significant locus near TBR1-SLC4A10 (rs117781972, OR, 2.05; 95% CI, 1.61 to 2.62; Pmeta=7.6×10-9), which has not been previously reported in GWAS for T2DM or glycaemic traits. Moreover, we found that women with a high PRS (top quintile) had over threefold (95% CI, 2.30 to 4.09; Pmeta=3.1×10-14) and 71% (95% CI, 1.08 to 2.71; P=0.0220) higher risk for GDM and abnormal glucose tolerance post-pregnancy, respectively, compared to other individuals.
Conclusion
Our results indicate that the genetic architecture of glucose metabolism exhibits both similarities and differences between the pregnant and non-pregnant states. Integrating genetic information can facilitate identification of pregnant women at a higher risk of developing GDM or later diabetes.
4.Identification and Potential Clinical Utility of Common Genetic Variants in Gestational Diabetes among Chinese Pregnant Women
Claudia Ha-ting TAM ; Ying WANG ; Chi Chiu WANG ; Lai Yuk YUEN ; Cadmon King-poo LIM ; Junhong LENG ; Ling WU ; Alex Chi-wai NG ; Yong HOU ; Kit Ying TSOI ; Hui WANG ; Risa OZAKI ; Albert Martin LI ; Qingqing WANG ; Juliana Chung-ngor CHAN ; Yan Chou YE ; Wing Hung TAM ; Xilin YANG ; Ronald Ching-wan MA
Diabetes & Metabolism Journal 2025;49(1):128-143
Background:
The genetic basis for hyperglycaemia in pregnancy remain unclear. This study aimed to uncover the genetic determinants of gestational diabetes mellitus (GDM) and investigate their applications.
Methods:
We performed a meta-analysis of genome-wide association studies (GWAS) for GDM in Chinese women (464 cases and 1,217 controls), followed by de novo replications in an independent Chinese cohort (564 cases and 572 controls) and in silico replication in European (12,332 cases and 131,109 controls) and multi-ethnic populations (5,485 cases and 347,856 controls). A polygenic risk score (PRS) was derived based on the identified variants.
Results:
Using the genome-wide scan and candidate gene approaches, we identified four susceptibility loci for GDM. These included three previously reported loci for GDM and type 2 diabetes mellitus (T2DM) at MTNR1B (rs7945617, odds ratio [OR], 1.64; 95% confidence interval [CI],1.38 to 1.96]), CDKAL1 (rs7754840, OR, 1.33; 95% CI, 1.13 to 1.58), and INS-IGF2-KCNQ1 (rs2237897, OR, 1.48; 95% CI, 1.23 to 1.79), as well as a novel genome-wide significant locus near TBR1-SLC4A10 (rs117781972, OR, 2.05; 95% CI, 1.61 to 2.62; Pmeta=7.6×10-9), which has not been previously reported in GWAS for T2DM or glycaemic traits. Moreover, we found that women with a high PRS (top quintile) had over threefold (95% CI, 2.30 to 4.09; Pmeta=3.1×10-14) and 71% (95% CI, 1.08 to 2.71; P=0.0220) higher risk for GDM and abnormal glucose tolerance post-pregnancy, respectively, compared to other individuals.
Conclusion
Our results indicate that the genetic architecture of glucose metabolism exhibits both similarities and differences between the pregnant and non-pregnant states. Integrating genetic information can facilitate identification of pregnant women at a higher risk of developing GDM or later diabetes.
5.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
6.Changes in corneal biomechanics after small incision lenticule extraction and femtosecond laser-assisted laser in situ keratomileusis evaluated by corneal visualization Scheimpflug technology
Wen-Jing LI ; Yang LIU ; Zheng-Lai WANG ; Jin-Jin ZHANG ; Zhen MA ; Ling-Jie ZHOU ; Bo CAI ; Wen-Juan ZHUANG
International Eye Science 2023;23(11):1793-1797
AIM:To evaluate the changes in corneal biomechanics of patients with moderate refractive error after receiving small-incision lenticule extraction(SMILE)and femtosecond laser-assisted laser in situ keratomileusis(FS-LASIK)using the corneal visualization Scheimpflug technology(Corvis ST).METHODS:Prospective cohort study. A total of 65 moderate myopia patients(65 eyes)who were scheduled to undergo refractive surgery at the Ophthalmic Refractive Surgery Center of the Ningxia Eye Hospital from November 2020 to November 2021 were included in the study, and there were 30 eyes in the SMILE group and 35 eyes in the FS-LASIK group. The changes in corneal biomechanical parameters, including integrated radius(IR), inverse concave radius(ICR), deformation amplitude ratio 2mm(DAR2), stiffness parameter at first applanation(SP-A1), ambrosio relational thickness(ARTh)and the central curvature radius at highest concavity(HC-Radius)were observed by Corvis ST between both groups preoperatively and 1 and 3mo postoperatively.RESULTS: There were no statistical significance in biomechanical parameters between two groups of patients 1 and 3mo postoperatively(P>0.05). IR, ICR and DAR2 of each groups of patients 1 and 3mo postoperatively were significantly increased than those preoperatively, and SP-A1, ARTh and HC-Radius were significantly decreased than those preoperatively(all P<0.05). The biomechanical parameters at 1mo and 3mo postoperatively showed no statistical significance(P>0.05). In addition, a positive correlation was found between central corneal thickness(CCT)and ARTh and SP-A1 of the two groups of patients at 3mo postoperatively(FS-LASIK group: r=0.727, 0.819, SMLIE group: r=0.683, 0.434, all P<0.05), while a negative correlation was found between CCT and IR and ICR at 3mo postoperatively.(FS-LASIK group: r=-0.697, -0.622, SMLIE group: r=-0.447, -0.491, all P<0.05).CONCLUSION:For patients with moderate myopia, both SMILE and FS-LASIK can reduce corneal biomechanical stability. Both surgeries showed no significant differences in the effect on biomechanical, and the biomechanical has been stabilized at 1mo postoperatively. A correlation was found between postoperative CCT and ARTh, SP-A1, IR and ICR.
7.Quality evaluation of Cnidii Fructus in commodity grade based on theory of "quality evaluation through morphological identification".
Hui-Fang HU ; Shao-Yang XI ; Hou-Kang CAO ; Yan-Xiu GUO ; Yuan-Meng WANG ; Ling-Hui GE ; Xiao-Hui MA ; Zhi-Lai ZHAN ; Ling JIN
China Journal of Chinese Materia Medica 2023;48(4):900-907
From the perspective of market classification of Cnidii Fructus, this paper revealed the scientific connotation of evaluating the quality grade of Cnidii Fructus by its appearance traits. Thirty batches of Cnidii Fructus in different grades were selected as the research objects. The canonical correlation analysis and principal component analysis(PCA) were used to explore the measurement values of 15 appearance traits and intrinsic content indexes. The results of correlation analysis showed that except the aspect ratio, the 5 appearance trait indexes(length, width, 1 000-grain weight, broken grain weight proportion, and chroma) and 9 internal content indexes(the content of moisture, total ash, acid insoluble ash, osthole, imperatorin, 5-methoxy psoralen, isopimpinellin, xanthotoxin, and xanthotol) showed significant correlation to varying degrees. In addition, there was a significant positive correlation between the first typical variable U_1 composed of appearance traits and the first typical variable V_1 composed of internal content indexes(CR_1=0.963, P<0.01). The results of PCA showed that the classification results of appearance traits for 30 batches of Cnidii Fructus were consistent with the actual information of the samples. Under the same analysis conditions, 30 batches of Cnidii Fructus were reclassified by 9 groups of internal content indexes, and the analysis results were consistent. From the classification standard of the appearance traits of the system study, the statistical results of 6 appearance traits of Cnidii Fructus showed a correlation with grades. There was a good correlation between the appearance and the internal content of Cnidii Fructus, and the appearance quality effectively predicted the level of the internal content. There is a certain scientific basis for the quality classification of Cnidii Fructus by main appearance traits. Appearance classification can replace quality grading to realize the "quality evaluation through morphological identification" of Cnidii Fructus.
Fruit
;
Phenotype
;
Principal Component Analysis
;
Social Group
8.Investigation and analysis of imported medicinal materials at Chinese border ports.
Xiao-Jing MA ; Hua-Sheng PENG ; Zhi-Lai ZHAN ; Ling WANG ; Xue-Yan HUANG ; Xiao-Jin LI ; Xiao-Jun MA ; Hai-Bo HUANG ; Min-Hui LI ; Rong ZHAO ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2022;47(21):5817-5823
Imported medicinal materials are an important part of Chinese medicinal resources. To be specific, about 10% of the around 600 commonly used Chinese medicinal materials are from abroad, and the introduction of foreign medicinal materials has promoted the development of Chinese medicine. Amid the advancement of reform and opening up and the "Belt and Road" Initiative, major headway has been made in the cross-border trade in China, bringing opportunities for the import of medicinal materials from border ports. However, for a long time, there is a lack of systematic investigation on the types of exotic medicinal materials at border ports. In the fourth national census of traditional Chinese medicine resources, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, together with several organizations, investigated the nearly 40 border ports, Chinese medicinal material markets, and border trade markets in 6 provinces/autonomous regions in China for the first time and recorded the types, sources, circulation, and the transaction characteristics of imported medicinal materials. Moreover, they invited experts to identify the origins of the collected 237 medicinal materials. In addition, the status quo and the problems of the medicinal materials were summarized. This study is expected to lay a basis for clarifying the market and origins of imported medicinal materials as well as the scientific research on and supervision of them.
Medicine, Chinese Traditional
;
Materia Medica
;
Records
;
Censuses
;
China
;
Drugs, Chinese Herbal
9.Herbal Textual Research on Gentianae Macrophyllae Radix in Famous Classical Formulas
Yuan-meng WANG ; De-dong HUANG ; Ling-hui GE ; Hui-fang HU ; Xiao-hui MA ; Li LIN ; Tian-tian ZHU ; Zhi-lai ZHAN ; Ling JIN
Chinese Journal of Experimental Traditional Medical Formulae 2022;28(10):140-149
In this paper, through consulting relevant records in materia medica, medical and prescription books, and combining with modern literature, the name, origin, producing area, collection and processing of Gentianae Macrophyllae Radix in famous classical formulas from The Catalogue of Ancient Famous Classical Formulas (The First Batch) was systematically sorted out and textual research was carried out, in order to provide a basis for the development of the famous classical formulas containing Gentianae macrophyllae Radix. After textual research, it was found that Gentianae Macrophyllae Radix was the rectification of name in the past dynasties. In addition, there were other names such as Qinjiao, Qingua and Qinzhua. Gentiana macrophylla, G. straminea, G. dahurica and G. siphonantha were the main origin of this herb in ancient literature. Among them, G. macrophylla is the mainstream. In the Southern and Northern dynasties, G. straminea and G. macrophylla produced in northern Sichuan were recommended as the best. In the early Tang dynasty, G. macrophylla from the Liupan Mountain area at the border of Shanxi and Gansu provinces was the mainstream. During the Northern Song dynasty, G. siphonantha from Linxia and Qilian Mountain of Gansu province and G. macrophylla from eastern Shaanxi province were two new producing areas. In the Ming and Qing dynasties, the abundant base and production areas of Gentianae Macrophyllae Radix were gradually formed. In the past dynasties, harvesting was carried out in spring and autumn, and stored mainly by aeration drying or shade drying treatment. The processing methods are mainly the raw products after the net selection, cutting and drying, in addition to the frying, processing with wine and milk. G. macrophylla is recommended as the first choice for the herbal medicine involved in the famous classical formulas. Among them, wild products produced in Gansu and Shaanxi are the best, and raw products are recommended to be used. At the same time, it is suggested that G. siphonantha should be added to the subsequent edition of Chinese Pharmacopoeia as one of origins of Gentianae Macrophyllae Radix.
10.Herbal Textual Research on Pheretima in Famous Classical Formulas
Cun-de MA ; Hui CHANG ; Yi-chen YANG ; Er-huan WANG ; Zhi-lai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2022;28(10):184-192
By consulting ancient herbal medicines and medical books, combined with modern documents and field investigations, the textual research of Pheretima has been conducted to verify the name, origin, producing area, quality, harvesting and processing changes, and sort out the relationship of origin between ancient and modern times, so as to provide reference and basis for the development and utilization of the related famous classical formulas. Through textual research, it is known that there are many aliases for Pheretima, the rectification of name was "Qiuyin" or "Baijing Qiuyin" in materia medica books. In the Song dynasty and later prescription books, the prescription name is mostly Dilong. From the beginning of Yaowu Chuchanbian (《药物出产辨》), Dilong was used as the rectification of name. It is widely distributed in our country, which is produced all over the country and mostly wild. According to ancient Pheretima with "Baijing Dilong", "Jingbai Shenzi" and "Datiao" as the principles of medicine, combined with historical origin, producing area and easy access, it is confirmed that Pheretima used in ancient times to the present is mainly Pheretima aspergillum, and it also has many other Qiuyin as Pheretima for medicinal purposes. Chinese Pharmacopoeia has unified the origin of the Pheretima since the 1995 edition based on historical origins and actual harvesting conditions. The medicinal material processed by P. aspergillum was called Guangdilong, and the medicinal materials processed by P. vulgaris, P. guillelmi and P. pectinifera were called Hudilong. Since then, all the herbal books published in the future are in line with Chinese Pharmacopoeia that was implemented at that time. The authentic production areas of Guangdilong are Guangdong and Guangxi, and the authentic production areas of Hudilong is Jiangsu, Shanghai, Zhejiang and Anhui. The Guangdilong produced in Guangdong and Guangxi has the best quality. After harvesting, remove the soil and offal, wash and dry. Clinically cut into sections for medicine, or prepare medicine according to prescription. The Pheretima in ancient used "Baijing Dilong", "Jingbai Shenzi" and "Datiao" as the mainstream quality evaluation standards. According to historical origins, P. aspergillum should be the main source of Pheretima, and its quality is better than other species. Therefore, it is recommended that Pheretima in Shentong Zhuyutang use P. aspergillum, which is produced in Guangdong, Guangxi and other places. After harvest, the abdomen was opened in time to remove the viscera and sediment, washed and dried.

Result Analysis
Print
Save
E-mail