1.Subchronic exposure to benzoapyrene results in lung tissue cell damage caused by ferroptosis in mice
Chaoli ZHOU ; Shihan DING ; Hui HE ; Zhirui MA ; Jie CHEN ; Xingdi GUO ; Yi LYU ; Jinping ZHENG
Journal of Environmental and Occupational Medicine 2025;42(8):971-977
Background Exposure to benzo[a]pyrene (BaP) may impair lung function through various mechanisms; however, it remains uncertain whether BaP induces ferroptosis in lung tissue cells, resulting in lung function impairment. Objective To investigate the ferroptosis of lung tissue cells triggered by subchronic BaP exposure in mice and its correlation with lung injury, and to explore the function of ferroptosis in BaP-induced lung tissue damage. Method Seventy-two healthy 3-weeks-old male C57BL/6J mice were acclimatized for 1 week and then randomly divided into six groups: control group (corn oil 10 mL·kg−1), low-dose BaP group (2.5 mg·kg−1), medium-dose BaP group (5 mg·kg−1), high-dose BaP group (10 mg·kg−1), BaP+ferrostatin-1 (Fer-1) group (10 mg·kg−1+1 mg·kg−1), and Fer-1 group (1 mg·kg−1), with 12 mice each group. Corn oil and BaP were administered via gavage every other day, followed by an intraperitoneal injection of Fer-1 the subsequent day, throughout a period of 90 d. Whole-body plethysmography was applied to detect lung function; hematoxylin-eosin staining (HE) and Masson staining were used to observe lung tissue injury and fibrosis; microscopy of alveolar epithelial cells was conducted to reveal mitochondrial morphology; biochemical assays were used to measure the content of tissue iron, malondialdehyde (MDA), and glutathione (GSH), as well as the activity of glutathione peroxidase (GSH-Px); Western blotting and real-time quantitative PCR (RT-qPCR) analyses were performed to reveal the protein and mRNA expression of ferroptosis markers. Results Compared to the control group, the high-dose BaP group showed a significant increase in expiration time (Te) (P<0.01), and a significant decrease in ratio rate of achieving peak expiratory flow (Rpef), tidal volume (TVb), peak inspiratory flow (PIF), minute volume (MVb), and peak expiratory flow (PEF) (P<0.05 or 0.01). Based on the results of HE and Masson staining, partial destruction of alveolar structures, thickening of alveolar walls, infiltration of inflammatory cells, significant thickening of tracheal walls and a large deposition of collagen fibers in lung tissue were observed in the medium- and high-dose BaP groups. By microscopy, the alveolar epithelial cells exposed to low-dose BaP showed condensed chromatin, and the mitochondria exposed to medium and high-dose BaP showed wrinkles, increased mitochondrial membrane density, and diminished mitochondrial cristae. Compared to the control group, in the medium- and high-dose BaP groups, the lung tissue iron content and the expression levels of ACSL4 protein and mRNA significantly elevated (P<0.01 or 0.05), while the mRNA expression level of SLC7A11 significantly decreased (P<0.05); in the high-dose BaP group, the MDA content, COX2 protein, and PTGS2 mRNA expression levels significantly increased (P<0.05 or 0.01), GSH content and GSH-Px activity, GPX4 protein and mRNA expression levels, and the expression level of SLC7A11 protein significantly decreased (P<0.01 or 0.05). The ferroptosis inhibitor Fer-1 markedly reversed respiratory function, morphology, mitochondrial alterations, and the aforementioned ferroptosis-related biochemical indicators. Conclusion Subchronic exposure to BaP can induce ferroptosis in mice lung tissue cells, resulting in compromised lung function.
2.Clinical application of split liver transplantation: a single center report of 203 cases
Qing YANG ; Shuhong YI ; Binsheng FU ; Tong ZHANG ; Kaining ZENG ; Xiao FENG ; Jia YAO ; Hui TANG ; Hua LI ; Jian ZHANG ; Yingcai ZHANG ; Huimin YI ; Haijin LYU ; Jianrong LIU ; Gangjian LUO ; Mian GE ; Weifeng YAO ; Fangfei REN ; Jinfeng ZHUO ; Hui LUO ; Liping ZHU ; Jie REN ; Yan LYU ; Kexin WANG ; Wei LIU ; Guihua CHEN ; Yang YANG
Chinese Journal of Surgery 2024;62(4):324-330
Objective:To investigate the safety and therapeutic effect of split liver transplantation (SLT) in clinical application.Methods:This is a retrospective case-series study. The clinical data of 203 consecutive SLT, 79 living donor liver transplantation (LDLT) and 1 298 whole liver transplantation (WLT) performed at the Third Affiliated Hospital of Sun Yat-sen University from July 2014 to July 2023 were retrospectively analyzed. Two hundred and three SLT liver grafts were obtained from 109 donors. One hundred and twenty-seven grafts were generated by in vitro splitting and 76 grafts were generated by in vivo splitting. There were 90 adult recipients and 113 pediatric recipients. According to time, SLT patients were divided into two groups: the early SLT group (40 cases, from July 2014 to December 2017) and the mature SLT technology group (163 cases, from January 2018 to July 2023). The survival of each group was analyzed and the main factors affecting the survival rate of SLT were analyzed. The Kaplan-Meier method and Log-rank test were used for survival analysis.Results:The cumulative survival rates at 1-, 3-, and 5-year were 74.58%, 71.47%, and 71.47% in the early SLT group, and 88.03%, 87.23%, and 87.23% in the mature SLT group, respectively. Survival rates in the mature SLT group were significantly higher than those in the early SLT group ( χ2=5.560, P=0.018). The cumulative survival rates at 1-, 3- and 5-year were 93.41%, 93.41%, 89.95% in the LDLT group and 87.38%, 81.98%, 77.04% in the WLT group, respectively. There was no significant difference among the mature SLT group, the LDLT group and the WLT group ( χ2=4.016, P=0.134). Abdominal hemorrhage, infection, primary liver graft nonfunction,and portal vein thrombosis were the main causes of early postoperative death. Conclusion:SLT can achieve results comparable to those of WLT and LDLT in mature technology liver transplant centers, but it needs to go through a certain time learning curve.
3.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
4.Clinical application of split liver transplantation: a single center report of 203 cases
Qing YANG ; Shuhong YI ; Binsheng FU ; Tong ZHANG ; Kaining ZENG ; Xiao FENG ; Jia YAO ; Hui TANG ; Hua LI ; Jian ZHANG ; Yingcai ZHANG ; Huimin YI ; Haijin LYU ; Jianrong LIU ; Gangjian LUO ; Mian GE ; Weifeng YAO ; Fangfei REN ; Jinfeng ZHUO ; Hui LUO ; Liping ZHU ; Jie REN ; Yan LYU ; Kexin WANG ; Wei LIU ; Guihua CHEN ; Yang YANG
Chinese Journal of Surgery 2024;62(4):324-330
Objective:To investigate the safety and therapeutic effect of split liver transplantation (SLT) in clinical application.Methods:This is a retrospective case-series study. The clinical data of 203 consecutive SLT, 79 living donor liver transplantation (LDLT) and 1 298 whole liver transplantation (WLT) performed at the Third Affiliated Hospital of Sun Yat-sen University from July 2014 to July 2023 were retrospectively analyzed. Two hundred and three SLT liver grafts were obtained from 109 donors. One hundred and twenty-seven grafts were generated by in vitro splitting and 76 grafts were generated by in vivo splitting. There were 90 adult recipients and 113 pediatric recipients. According to time, SLT patients were divided into two groups: the early SLT group (40 cases, from July 2014 to December 2017) and the mature SLT technology group (163 cases, from January 2018 to July 2023). The survival of each group was analyzed and the main factors affecting the survival rate of SLT were analyzed. The Kaplan-Meier method and Log-rank test were used for survival analysis.Results:The cumulative survival rates at 1-, 3-, and 5-year were 74.58%, 71.47%, and 71.47% in the early SLT group, and 88.03%, 87.23%, and 87.23% in the mature SLT group, respectively. Survival rates in the mature SLT group were significantly higher than those in the early SLT group ( χ2=5.560, P=0.018). The cumulative survival rates at 1-, 3- and 5-year were 93.41%, 93.41%, 89.95% in the LDLT group and 87.38%, 81.98%, 77.04% in the WLT group, respectively. There was no significant difference among the mature SLT group, the LDLT group and the WLT group ( χ2=4.016, P=0.134). Abdominal hemorrhage, infection, primary liver graft nonfunction,and portal vein thrombosis were the main causes of early postoperative death. Conclusion:SLT can achieve results comparable to those of WLT and LDLT in mature technology liver transplant centers, but it needs to go through a certain time learning curve.
5.Diagnostic value of a combined serology-based model for minimal hepatic encephalopathy in patients with compensated cirrhosis
Shanghao LIU ; Hongmei ZU ; Yan HUANG ; Xiaoqing GUO ; Huiling XIANG ; Tong DANG ; Xiaoyan LI ; Zhaolan YAN ; Yajing LI ; Fei LIU ; Jia SUN ; Ruixin SONG ; Junqing YAN ; Qing YE ; Jing WANG ; Xianmei MENG ; Haiying WANG ; Zhenyu JIANG ; Lei HUANG ; Fanping MENG ; Guo ZHANG ; Wenjuan WANG ; Shaoqi YANG ; Shengjuan HU ; Jigang RUAN ; Chuang LEI ; Qinghai WANG ; Hongling TIAN ; Qi ZHENG ; Yiling LI ; Ningning WANG ; Huipeng CUI ; Yanmeng WANG ; Zhangshu QU ; Min YUAN ; Yijun LIU ; Ying CHEN ; Yuxiang XIA ; Yayuan LIU ; Ying LIU ; Suxuan QU ; Hong TAO ; Ruichun SHI ; Xiaoting YANG ; Dan JIN ; Dan SU ; Yongfeng YANG ; Wei YE ; Na LIU ; Rongyu TANG ; Quan ZHANG ; Qin LIU ; Gaoliang ZOU ; Ziyue LI ; Caiyan ZHAO ; Qian ZHAO ; Qingge ZHANG ; Huafang GAO ; Tao MENG ; Jie LI ; Weihua WU ; Jian WANG ; Chuanlong YANG ; Hui LYU ; Chuan LIU ; Fusheng WANG ; Junliang FU ; Xiaolong QI
Chinese Journal of Laboratory Medicine 2023;46(1):52-61
Objective:To investigate the diagnostic accuracy of serological indicators and evaluate the diagnostic value of a new established combined serological model on identifying the minimal hepatic encephalopathy (MHE) in patients with compensated cirrhosis.Methods:This prospective multicenter study enrolled 263 compensated cirrhotic patients from 23 hospitals in 15 provinces, autonomous regions and municipalities of China between October 2021 and August 2022. Clinical data and laboratory test results were collected, and the model for end-stage liver disease (MELD) score was calculated. Ammonia level was corrected to the upper limit of normal (AMM-ULN) by the baseline blood ammonia measurements/upper limit of the normal reference value. MHE was diagnosed by combined abnormal number connection test-A and abnormal digit symbol test as suggested by Guidelines on the management of hepatic encephalopathy in cirrhosis. The patients were randomly divided (7∶3) into training set ( n=185) and validation set ( n=78) based on caret package of R language. Logistic regression was used to establish a combined model of MHE diagnosis. The diagnostic performance was evaluated by the area under the curve (AUC) of receiver operating characteristic curve, Hosmer-Lemeshow test and calibration curve. The internal verification was carried out by the Bootstrap method ( n=200). AUC comparisons were achieved using the Delong test. Results:In the training set, prevalence of MHE was 37.8% (70/185). There were statistically significant differences in AMM-ULN, albumin, platelet, alkaline phosphatase, international normalized ratio, MELD score and education between non-MHE group and MHE group (all P<0.05). Multivariate Logistic regression analysis showed that AMM-ULN [odds ratio ( OR)=1.78, 95% confidence interval ( CI) 1.05-3.14, P=0.038] and MELD score ( OR=1.11, 95% CI 1.04-1.20, P=0.002) were independent risk factors for MHE, and the AUC for predicting MHE were 0.663, 0.625, respectively. Compared with the use of blood AMM-ULN and MELD score alone, the AUC of the combined model of AMM-ULN, MELD score and education exhibited better predictive performance in determining the presence of MHE was 0.755, the specificity and sensitivity was 85.2% and 55.7%, respectively. Hosmer-Lemeshow test and calibration curve showed that the model had good calibration ( P=0.733). The AUC for internal validation of the combined model for diagnosing MHE was 0.752. In the validation set, the AUC of the combined model for diagnosing MHE was 0.794, and Hosmer-Lemeshow test showed good calibration ( P=0.841). Conclusion:Use of the combined model including AMM-ULN, MELD score and education could improve the predictive efficiency of MHE among patients with compensated cirrhosis.
7.A comparative study of the clinical characteristics of spotted fever and severe fever with thrombocytopenia syndrome
YANG Hui ; SUN Jie ; XU Peng-peng ; QIN Wei ; ZHANG Xia-qing ; HU Jie-ying ; LYU Yong
China Tropical Medicine 2023;23(4):373-
Abstract: Objective To investigate the differences in epidemiological and clinical characteristics of patients with spotted fever (SF) and severe fever with thrombocytopenia syndrome (SFTS). Methods A total of 86 patients with SF and 113 patients with SFTS who were laboratory-confirmed in the second-level and above hospitals in Lu'an City from January 2017 to January 2022 were selected. The basic data, epidemiological history, clinical data and laboratory test results of the two diseases were retrospectively analyzed for comparison. Results The proportion of male in SF group was 32.56% (28/86), and the proportion of male in SFTS group was 53.98% (61/113), the difference was statistically significant (χ2=9.067, P<0.01). The proportions of abdominal pain and diarrhea in the SF group were (3.49%, 3/83) and (21.24%, 24/113), which were significantly lower than corresponding (6.98%, 6/86) and (46.90%, 53/113) in the SFTS group (χ2=13.121, 37.322, P<0.01). The incidences of rash and eschar in SF group were 95.35% (82/86) and 20.93% (18/86), which were significantly higher than corresponding 1.77% (2/113) and 0.88% (1/113) in SFTS group (χ2=175.311, 22.721, P<0.01). The levels of leukocytes, platelets and C-reactive protein in the SF group were significantly higher than those in the SFTS group, and the levels of transaminase, lactate dehydrogenase and D-dimer were significantly lower than those in the SFTS group, and the differences were statistically significant (all P<0.05). Conclusions The rash and inflammatory reaction are more obvious in SF patients, while the liver function, myocardial function and coagulation function are significantly impaired in SFTS patients.
8.Chemical constituents in Dolomiaea plants and their pharmacological activities: a review.
Yan-Hui LYU ; Wei CHEN ; Yan-Ping WEI ; Xin-Tong WEI ; Jie WANG ; Qian-Qian DING ; Zhan-Hong LI ; Ji-Xiang HE ; Xian-Peng ZU
China Journal of Chinese Materia Medica 2023;48(6):1463-1482
Dolomiaea plants are perennial herbs in the Asteraceae family with a long medicinal history. They are rich in chemical constituents, mainly including sesquiterpenes, phenylpropanoids, triterpenes, and steroids. The extracts and chemical constituents of Dolomiaea plants have various pharmacological effects, such as anti-inflammatory, antibacterial, antitumor, anti-gastric ulcer, hepatoprotective and choleretic effects. However, there are few reports on Dolomiaea plants. This study systematically reviewed the research progress on the chemical constituents and pharmacological effects of Dolomiaea plants to provide references for the further development and research of Dolomiaea plants.
Plant Extracts/pharmacology*
;
Asteraceae
;
Triterpenes
;
Sesquiterpenes/pharmacology*
;
Anti-Inflammatory Agents
;
Phytochemicals/pharmacology*
9.LOX-1 Regulation in Anti-atherosclerosis of Active Compounds of Herbal Medicine: Current Knowledge and the New Insight.
Si-Jie YAO ; Tao-Hua LAN ; Xin-Yu ZHANG ; Qiao-Huang ZENG ; Wen-Jing XU ; Xiao-Qing LI ; Gui-Bao HUANG ; Tong LIU ; Wei-Hui LYU ; Wei JIANG
Chinese journal of integrative medicine 2023;29(2):179-185
Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) have recently been identified to be closely related to the occurrence and development of atherosclerosis (AS). A growing body of evidence has suggested Chinese medicine takes unique advantages in preventing and treating AS. In this review, the related research progress of AS and LOX-1 has been summarized. And the anti-AS effects of 10 active components of herbal medicine through LOX-1 regulation have been further reviewed. As a potential biomarker and target for intervention in AS, LOX-1 targeted therapy might provide a promising and novel approach to atherosclerotic prevention and treatment.
Humans
;
Atherosclerosis
;
Scavenger Receptors, Class E/physiology*
;
Biomarkers
;
Plant Extracts
;
Lipoproteins, LDL
10.A prospective clinical trial of TCD-induced regimen for symptomatic Waldenström macroglobulinemia.
Yan Shan HUANG ; Wen Jie XIONG ; Ying YU ; Yu Ting YAN ; Ting Yu WANG ; Rui LYU ; Wei LIU ; Gang AN ; Yao Zhong ZHAO ; De Hui ZOU ; Lu Gui QIU ; Shu Hua YI
Chinese Journal of Hematology 2023;44(8):680-683

Result Analysis
Print
Save
E-mail