1.Study on the pharmacological effects and mechanism of Gegen-Zhimu herb pair in preventing and treating Alzheimer's disease by UHPLC-Q/TOF-MS metabolomics strategy
Liang CHAO ; Hui WANG ; Shuqi SHEN ; Piaoxue YOU ; Kaihong JI ; Zhanying HONG
Journal of Pharmaceutical Practice and Service 2025;43(1):30-40
Objective To evaluate the efficacy of Puerariae lobatae radix (PLR) and Anemarrhenae Rhizoma (AR) in preventing and treating Alzheimer’s disease (AD) and explore its potential mechanism of action by LC-MS serum metabolomics strategy. Methods The AD rat model was established by administering aluminum chloride (AlCl3) and D-galactose (D-gal) for 20 weeks. The traditional Chinese medicine intervention group was given the PLR, AR, and PLR-AR extracts for 8 weeks by gavage. The model effect and efficacy were evaluated by Morris water maze test and biochemical indicators including SOD, NO, and MDA; Metabolomics research based on the UHPLC-Q/TOF-MS method was conducted, and relevant metabolic pathways were analyzed through the MetaboAnalyst online website. Results The learning and memory abilities of AD model rats were significantly decreased compared with the control group, and the levels of oxidative stress and lipid peroxides were significantly increased (P<0.05), while the SOD content was decreased considerably (P<0.01). The learning and memory abilities of AD model rats were improved, oxidative stress and lipid peroxidation levels were reversed, and serum SOD content was increased significantly after the intervention of PLR-AR, with better effects than single drugs. Through metabolomics, 70 differential metabolites were identified between the AD model group and the control group, mainly involving 10 pathways, including phenylalanine, tyrosine, and tryptophan biosynthesis, phenylalanine metabolism, and unsaturated fatty acid biosynthesis, et.al. The intervention of PLR-AR could adjust 47 metabolites, with 20 metabolites showing significant differences (P<0.05). The significantly adjusted metabolites involve 6 pathways, including phenylalanine, tyrosine, and tryptophan biosynthesis, et al. Conclusion The combination of PLR and AR could significantly improve the learning and memory abilities of AD rat models. The mechanism may be related to the improvement of oxidative stress and lipid peroxidation levels, the increase of serum SOD content, and the regulation of phenylalanine, tyrosine, and tryptophan biosynthesis pathways.
2.Protective effect of Shenfu injection against neonatal hypoxic-ischemic brain injury by inhibiting the ferroptosis
Xiaotong Zhang ; Meng Zhang ; Gang Li ; Yang Hu ; Yajing Xun ; Hui Ding ; Donglin Shen ; Ming Wu
Acta Universitatis Medicinalis Anhui 2025;60(1):31-40
Objective :
To observe the brain tissue injury during hypoxia-ischemia, as well as the pathological changes and the expression of ferroptosis-related factors after the use of Shenfu injection(SFI), and to explore the protective effect of SFI on hypoxic-ischemic brain injury(HIBD) by inhibiting ferroptosis.
Methods :
An animal model of HIBD in SD rats was constructed and intervened with SFI. Pathologic changes in brain tissue were observed by HE staining methods. Nissen staining was used to observe neuron survival. Glutathione Peroxidase 4(GPX4) and Divalent Metal Transporter 1(DMT1) expression were detected in brain tissue by Western blot, immunohistochemistry and immunofluorescence. Reduced Glutathione(GSH), Lactate Dehydrogenase(LDH), Malondialdehyde(MDA), Superoxide Dismutase(SOD) and tissue iron content were determined with the kits. BV-2 microglial cell line(BV2) cells were culturedin vitroand divided into control group(Ctrl group), oxygen-glucose deprivation group(OGD group), iron ferroptosis-inducing group(Erastin group), iron ferroptosis-inhibiting group(Fer-1 group), Shenfu injection group(SFI group), and Erastin+Shenfu injection group(Erastin+SFI group). 2′,7′-Dichlorodihydrofluorescein diacetate(DCFH-DA) reactive oxygen species(ROS) fluorescent probe was used to detect the ROS release level; Immunofluorescence was used to observe intracellular GPX4, DMT1 expression.
Results :
Compared with the Sham group, rats in the HIBD group showed significant neuronal cell damage in brain tissue, decreased GPX4 expression(P<0.01), increased DMT1 expression(P<0.01), decreased GSH and SOD levels(P<0.01), and increased LDH, MDA and tissue iron levels(P<0.05,P<0.05,P<0.01). In contrast, after the intervention of SFI, GPX4 expression was elevated(P<0.01), DMT1 expression decreased(P<0.01), GSH and SOD levels were elevated(P<0.01), and LDH, MDA, and tissue iron levels decreased(P<0.05,P<0.05,P<0.01). The cells experiments showed that compared with the Ctrl group, the OGD group had a significantly higher ROS content and a decrease in the expression of GPX4 fluorescence intensity, and an increase in the fluorescence intensity of DMT1(P<0.01), compared with the OGD group, the ROS content was reduced in the SFI group, while the expression of GPX4 was elevated and the expression of DMT1 was reduced(P<0.01).
Conclusion
Hippocampal and cortical regions are severely damaged after HIBD in neonatal rats, and their brain tissues show decreased expression of GPX4 and increased expression of DMT1. The above suggests that ferroptosis is involved in HIBD brain injury in neonatal rats. In contrast, Shenfu injection has a protective effect on HIBD experimental animal model and BV2 cell injury model by reducing iron aggregation and ROS production.
3.Ultrasound-based radiogenomics: status, applications, and future direction
Si-Rui WANG ; Yu-Ting SHEN ; Bin HUANG ; Hui-Xiong XU
Ultrasonography 2025;44(2):95-111
Radiogenomics, an extension of radiomics, explores the relationship between imaging features and underlying gene expression patterns. This field is instrumental in providing reliable imaging surrogates, thus potentially representing an alternative to genetic testing. The rapidly growing area of radiogenomics that utilizes ultrasound (US) imaging seeks to elucidate the connections between US image characteristics and genomic data. In this review, the authors outline the radiogenomics workflow and summarize the applications of US-based radiogenomics. These include the prediction of gene variations, molecular subtypes, and other biological characteristics, as well as the exploration of the relationships between US phenotypes and cancer gene profiles. Although the field faces various challenges, US-based radiogenomics offers promising prospects and avenues for future research.
4.Criteria and prognostic models for patients with hepatocellular carcinoma undergoing liver transplantation
Meng SHA ; Jun WANG ; Jie CAO ; Zhi-Hui ZOU ; Xiao-ye QU ; Zhi-feng XI ; Chuan SHEN ; Ying TONG ; Jian-jun ZHANG ; Seogsong JEONG ; Qiang XIA
Clinical and Molecular Hepatology 2025;31(Suppl):S285-S300
Hepatocellular carcinoma (HCC) is a leading cause of cancer-associated death globally. Liver transplantation (LT) has emerged as a key treatment for patients with HCC, and the Milan criteria have been adopted as the cornerstone of the selection policy. To allow more patients to benefit from LT, a number of expanded criteria have been proposed, many of which use radiologic morphological characteristics with larger and more tumors as surrogates to predict outcomes. Other groups developed indices incorporating biological variables and dynamic markers of response to locoregional treatment. These expanded selection criteria achieved satisfactory results with limited liver supplies. In addition, a number of prognostic models have been developed using clinicopathological characteristics, imaging radiomics features, genetic data, and advanced techniques such as artificial intelligence. These models could improve prognostic estimation, establish surveillance strategies, and bolster long-term outcomes in patients with HCC. In this study, we reviewed the latest findings and achievements regarding the selection criteria and post-transplant prognostic models for LT in patients with HCC.
5.Ultrasound-based radiogenomics: status, applications, and future direction
Si-Rui WANG ; Yu-Ting SHEN ; Bin HUANG ; Hui-Xiong XU
Ultrasonography 2025;44(2):95-111
Radiogenomics, an extension of radiomics, explores the relationship between imaging features and underlying gene expression patterns. This field is instrumental in providing reliable imaging surrogates, thus potentially representing an alternative to genetic testing. The rapidly growing area of radiogenomics that utilizes ultrasound (US) imaging seeks to elucidate the connections between US image characteristics and genomic data. In this review, the authors outline the radiogenomics workflow and summarize the applications of US-based radiogenomics. These include the prediction of gene variations, molecular subtypes, and other biological characteristics, as well as the exploration of the relationships between US phenotypes and cancer gene profiles. Although the field faces various challenges, US-based radiogenomics offers promising prospects and avenues for future research.
6.Ultrasound-based radiogenomics: status, applications, and future direction
Si-Rui WANG ; Yu-Ting SHEN ; Bin HUANG ; Hui-Xiong XU
Ultrasonography 2025;44(2):95-111
Radiogenomics, an extension of radiomics, explores the relationship between imaging features and underlying gene expression patterns. This field is instrumental in providing reliable imaging surrogates, thus potentially representing an alternative to genetic testing. The rapidly growing area of radiogenomics that utilizes ultrasound (US) imaging seeks to elucidate the connections between US image characteristics and genomic data. In this review, the authors outline the radiogenomics workflow and summarize the applications of US-based radiogenomics. These include the prediction of gene variations, molecular subtypes, and other biological characteristics, as well as the exploration of the relationships between US phenotypes and cancer gene profiles. Although the field faces various challenges, US-based radiogenomics offers promising prospects and avenues for future research.
7.Criteria and prognostic models for patients with hepatocellular carcinoma undergoing liver transplantation
Meng SHA ; Jun WANG ; Jie CAO ; Zhi-Hui ZOU ; Xiao-ye QU ; Zhi-feng XI ; Chuan SHEN ; Ying TONG ; Jian-jun ZHANG ; Seogsong JEONG ; Qiang XIA
Clinical and Molecular Hepatology 2025;31(Suppl):S285-S300
Hepatocellular carcinoma (HCC) is a leading cause of cancer-associated death globally. Liver transplantation (LT) has emerged as a key treatment for patients with HCC, and the Milan criteria have been adopted as the cornerstone of the selection policy. To allow more patients to benefit from LT, a number of expanded criteria have been proposed, many of which use radiologic morphological characteristics with larger and more tumors as surrogates to predict outcomes. Other groups developed indices incorporating biological variables and dynamic markers of response to locoregional treatment. These expanded selection criteria achieved satisfactory results with limited liver supplies. In addition, a number of prognostic models have been developed using clinicopathological characteristics, imaging radiomics features, genetic data, and advanced techniques such as artificial intelligence. These models could improve prognostic estimation, establish surveillance strategies, and bolster long-term outcomes in patients with HCC. In this study, we reviewed the latest findings and achievements regarding the selection criteria and post-transplant prognostic models for LT in patients with HCC.
8.Ultrasound-based radiogenomics: status, applications, and future direction
Si-Rui WANG ; Yu-Ting SHEN ; Bin HUANG ; Hui-Xiong XU
Ultrasonography 2025;44(2):95-111
Radiogenomics, an extension of radiomics, explores the relationship between imaging features and underlying gene expression patterns. This field is instrumental in providing reliable imaging surrogates, thus potentially representing an alternative to genetic testing. The rapidly growing area of radiogenomics that utilizes ultrasound (US) imaging seeks to elucidate the connections between US image characteristics and genomic data. In this review, the authors outline the radiogenomics workflow and summarize the applications of US-based radiogenomics. These include the prediction of gene variations, molecular subtypes, and other biological characteristics, as well as the exploration of the relationships between US phenotypes and cancer gene profiles. Although the field faces various challenges, US-based radiogenomics offers promising prospects and avenues for future research.
9.Criteria and prognostic models for patients with hepatocellular carcinoma undergoing liver transplantation
Meng SHA ; Jun WANG ; Jie CAO ; Zhi-Hui ZOU ; Xiao-ye QU ; Zhi-feng XI ; Chuan SHEN ; Ying TONG ; Jian-jun ZHANG ; Seogsong JEONG ; Qiang XIA
Clinical and Molecular Hepatology 2025;31(Suppl):S285-S300
Hepatocellular carcinoma (HCC) is a leading cause of cancer-associated death globally. Liver transplantation (LT) has emerged as a key treatment for patients with HCC, and the Milan criteria have been adopted as the cornerstone of the selection policy. To allow more patients to benefit from LT, a number of expanded criteria have been proposed, many of which use radiologic morphological characteristics with larger and more tumors as surrogates to predict outcomes. Other groups developed indices incorporating biological variables and dynamic markers of response to locoregional treatment. These expanded selection criteria achieved satisfactory results with limited liver supplies. In addition, a number of prognostic models have been developed using clinicopathological characteristics, imaging radiomics features, genetic data, and advanced techniques such as artificial intelligence. These models could improve prognostic estimation, establish surveillance strategies, and bolster long-term outcomes in patients with HCC. In this study, we reviewed the latest findings and achievements regarding the selection criteria and post-transplant prognostic models for LT in patients with HCC.
10.Ultrasound-based radiogenomics: status, applications, and future direction
Si-Rui WANG ; Yu-Ting SHEN ; Bin HUANG ; Hui-Xiong XU
Ultrasonography 2025;44(2):95-111
Radiogenomics, an extension of radiomics, explores the relationship between imaging features and underlying gene expression patterns. This field is instrumental in providing reliable imaging surrogates, thus potentially representing an alternative to genetic testing. The rapidly growing area of radiogenomics that utilizes ultrasound (US) imaging seeks to elucidate the connections between US image characteristics and genomic data. In this review, the authors outline the radiogenomics workflow and summarize the applications of US-based radiogenomics. These include the prediction of gene variations, molecular subtypes, and other biological characteristics, as well as the exploration of the relationships between US phenotypes and cancer gene profiles. Although the field faces various challenges, US-based radiogenomics offers promising prospects and avenues for future research.


Result Analysis
Print
Save
E-mail