1.Structure and Function of GPR126/ADGRG6
Ting-Ting WU ; Si-Qi JIA ; Shu-Zhu CAO ; De-Xin ZHU ; Guo-Chao TANG ; Zhi-Hua SUN ; Xing-Mei DENG ; Hui ZHANG
Progress in Biochemistry and Biophysics 2025;52(2):299-309
GPR126, also known as ADGRG6, is one of the most deeply studied aGPCRs. Initially, GPR126 was thought to be a receptor associated with muscle development and was primarily expressed in the muscular and skeletal systems. With the deepening of research, it was found that GPR126 is expressed in multiple mammalian tissues and organs, and is involved in many biological processes such as embryonic development, nervous system development, and extracellular matrix interactions. Compared with other aGPCRs proteins, GPR126 has a longer N-terminal domain, which can bind to ligands one-to-one and one-to-many. Its N-terminus contains five domains, a CUB (complement C1r/C1s, Uegf, Bmp1) domain, a PTX (Pentraxin) domain, a SEA (Sperm protein, Enterokinase, and Agrin) domain, a hormone binding (HormR) domain, and a conserved GAIN domain. The GAIN domain has a self-shearing function, which is essential for the maturation, stability, transport and function of aGPCRs. Different SEA domains constitute different GPR126 isomers, which can regulate the activation and closure of downstream signaling pathways through conformational changes. GPR126 has a typical aGPCRs seven-transmembrane helical structure, which can be coupled to Gs and Gi, causing cAMP to up- or down-regulation, mediating transmembrane signaling and participating in the regulation of cell proliferation, differentiation and migration. GPR126 is activated in a tethered-stalk peptide agonism or orthosteric agonism, which is mainly manifested by self-proteolysis or conformational changes in the GAIN domain, which mediates the rapid activation or closure of downstream pathways by tethered agonists. In addition to the tethered short stem peptide activation mode, GPR126 also has another allosteric agonism or tunable agonism mode, which is specifically expressed as the GAIN domain does not have self-shearing function in the physiological state, NTF and CTF always maintain the binding state, and the NTF binds to the ligand to cause conformational changes of the receptor, which somehow transmits signals to the GAIN domain in a spatial structure. The GAIN domain can cause the 7TM domain to produce an activated or inhibited signal for signal transduction, For example, type IV collagen interacts with the CUB and PTX domains of GPR126 to activate GPR126 downstream signal transduction. GPR126 has homology of 51.6%-86.9% among different species, with 10 conserved regions between different species, which can be traced back to the oldest metazoans as well as unicellular animals.In terms of diseases, GPR126 dysfunction involves the pathological process of bone, myelin, embryo and other related diseases, and is also closely related to the occurrence and development of malignant tumors such as breast cancer and colon cancer. However, the biological function of GPR126 in various diseases and its potential as a therapeutic target still needs further research. This paper focuses on the structure, interspecies differences and conservatism, signal transduction and biological functions of GPR126, which provides ideas and references for future research on GPR126.
2.Survival differences between endoscopic treatment and surgical treatment for patients with T1-2N0M0 duodenal neuroendocrine tumor
Bin BAI ; Xian SU ; Haibei XIN ; Minfeng ZHANG ; Hua XIAO ; Hui CAI
Chinese Journal of Clinical Medicine 2025;32(1):108-113
Objective To compare the long-term survival outcomes of patients with T1-2N0M0 duodenal neuroendocrine tumor (DNET) after endoscopic resection (ER) or surgical resection (SR). Methods Patients diagnosed with T1-2N0M0 DNET between January 1, 2004, and December 31, 2015, were extracted from the SEER database. Kaplan-Meier survival curve and log-rank test were used to compare overall survival (OS) rate and cancer-specific survival (CSS) rate between patients undergoing ER or SR. Propensity score matching (PSM) was used to reduce grouping differences, and multivariate Cox regression was used to analyze factors affecting OS and CSS before and after PSM. Results A total of 656 patients were included, with 457 in ER group and 199 in SR group. Before PSM, there was no significant difference in the 5-year OS rate between the ER and SR groups (88.9% vs 89.6%), but there was a significant difference in the 5-year CSS rate (99.3% vs 96.9%, P=0.017). Before PSM, multivariate Cox regression analysis showed advanced age was an independent risk factor for decreased OS (P<0.001). After PSM, there was no significant difference between the ER group (n=187) and SR group (n=187) in 5-year OS rate (90.2% vs 88.9%) or CSS rate (98.9% vs 96.7%). After PSM, multivariate Cox regression also showed advanced age was an independent risk factor for decreased OS, while resection method was not an independent factor for OS or CSS. Conclusions There is no significant difference in OS or CSS after endoscopic treatment and surgical treatments for patients with T1-2N0M0 DNET, and advanced age is an independent factor for OS.
3.Systematic review of association between 24 h movement behavior and cognitive function in children and adolescents
YANG Jie, ZHENG Shuqi, WU Hua, ZHOU Wenlong, RUAN Hui
Chinese Journal of School Health 2025;46(2):244-248
Objective:
To analyze the relationship between 24 h movement behaviors and cognitive function in children and adolescents, as well as the isotemporal substitution benefits, in order to provide a basis for developing cognitive development intervention strategies among children and adolescents.
Methods:
Relevant studies were searched in the Web of Science, PubMed, Embase, EBSCO, and China National Knowledge Infrastructure databases from their inception to November 30, 2024. Systematic evaluation was performed after document screening, data extraction and quality assessment.
Results:
A total of 24 highquality studies were included, comprising 35 295 children and adolescents aged 3-18 years. Adhering to the 24 h activity guidelines was associated with better cognitive performance (19 studies). Additionally, substituting 5-30 minutes per day of moderate to vigorous physical activity (MVPA) or sleep (SLP) for sedentary behavior (SB) or light physical activity (LPA) were associated with improvements in cognitive function (7 studies). There were inconsistencies in the effects of different types of SB (learning or entertainment) on cognitive function.
Conclusions
Adherence to the 24 h activity guidelines supports cognitive development in children and adolescents, with MVPA and SLP as key intervention targets. Increasing the proportion of MVPA, ensuring adequate SLP, and limiting recreational SB and screen time might be helpful to enhance the combined benefits of these three behaviors.
4.Cloning, subcellular localization and expression analysis of SmIAA7 gene from Salvia miltiorrhiza
Yu-ying HUANG ; Ying CHEN ; Bao-wei WANG ; Fan-yuan GUAN ; Yu-yan ZHENG ; Jing FAN ; Jin-ling WANG ; Xiu-hua HU ; Xiao-hui WANG
Acta Pharmaceutica Sinica 2025;60(2):514-525
The auxin/indole-3-acetic acid (Aux/IAA) gene family is an important regulator for plant growth hormone signaling, involved in plant growth, development, as well as response to environmental stresses. In the present study, we identified
5.Study on secondary metabolites of Penicillium expansum GY618 and their tyrosinase inhibitory activities
Fei-yu YIN ; Sheng LIANG ; Qian-heng ZHU ; Feng-hua YUAN ; Hao HUANG ; Hui-ling WEN
Acta Pharmaceutica Sinica 2025;60(2):427-433
Twelve compounds were isolated from the rice fermentation extracts of
6.Four new sesquiterpenoids from the roots of Atractylodes macrocephala
Gang-gang ZHOU ; Jia-jia LIU ; Ji-qiong WANG ; Hui LIU ; Zhi-Hua LIAO ; Guo-wei WANG ; Min CHEN ; Fan-cheng MENG
Acta Pharmaceutica Sinica 2025;60(1):179-184
The chemical constituents in dried roots of
7.Advancement in the mechanism and influencing factors of retinal displacement after rhegmatogenous retinal detachment surgery
Shengnan LI ; Li WANG ; Xiaojing YI ; Hua WANG ; Hui REN
International Eye Science 2025;25(6):924-927
Retinal displacement refers to the strong fluorescent lines parallel to the retinal vessels that are detected through autofluorescence examination after rhegmatogenous retinal detachment(RRD)surgery. Actually, even if patients with RRD achieve macroscopic structural reattachment after the operation, the visual function of some patients remains suboptimal. This is associated with the incomplete recovery of retinal function, and retinal displacement is one of the critical influencing factors. This paper reviews the related concepts of retinal displacement and systematically summarizes the incidence of retinal displacement after RRD surgery and its impact on function, the possible mechanisms of retinal displacement, and the influence of various factors on the occurrence of retinal displacement reported in the recent 5 a. It is conducive to enabling surgeons to conduct better design and planning for retinal reattachment surgeries, then achieve higher integrity of retinal function recovery, and enable patients to obtain better postoperative visual function.
8.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
9.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
10.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.


Result Analysis
Print
Save
E-mail