1.Effects and mechanism of paeoniflorin on oxidative stress of ulcerative colitis mice
Xin DAI ; Ying WANG ; Xinyue REN ; Dingxing FAN ; Xianzhe LI ; Jiaxuan FENG ; Shilei LOU ; Hui YAN ; Cong SUN
China Pharmacy 2025;36(4):427-433
OBJECTIVE To investigate the effects and potential mechanism of paeoniflorin on oxidative stress of ulcerative colitis (UC) mice based on adenosine monophosphate-activated protein kinase (AMPK)/nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway. METHODS Male BALB/c mice were randomly divided into control group, model group, inhibitor group (AMPK inhibitor Compound C 20 mg/kg), paeoniflorin low-, medium- and high-dose groups (paeoniflorin 12.5, 25, 50 mg/kg), high- dose of paeoniflorin+inhibitor group (paeoniflorin 50 mg/kg+Compound C 20 mg/kg), with 8 mice in each group. Except for the control group, mice in all other groups were given 4% dextran sulfate sodium solution for 5 days to establish the UC model. Subsequently, mice in each drug group were given the corresponding drug solution intragastrically or intraperitoneally, once a day, for 7 consecutive days. The changes in body weight of mice were recorded during the experiment. Twenty-four hours after the last administration, colon length, malondialdehyde (MDA) content, and activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in colon tissues were measured; histopathological morphology of colon tissues, tight junctions between intestinal epithelial cells, and histopathological scoring were all observed and evaluated; the mRNA expressions of AMPK and Nrf2, as well as the protein expressions of heme oxygenase-1(HO-1), occludin and claudin-1, were all determined in colon tissue. RESULTS Compared with model group, paeoniflorin groups exhibited recovery from pathological changes such as inflammatory cell infiltration and crypt damage in the colon tissue, as well as improved tight junction damage between intestinal epithelial cells. Additionally, significant increases or upregulations were observed in body weight, colon length, activities of SOD and GSH-Px, phosphorylation level of AMPK, and protein expression of Nrf2, HO-1, occludin, claudin-1, and mRNA expressions of AMPK and Nrf2; concurrently, MDA content and histopathological scores were significantly reduced (P< 0.05 or P<0.01). In contrast, the inhibitor group showed comparable (P>0.05) or worse (P<0.05 or P<0.01) indicators compared to the model group. Conversely, the addition of AMPK inhibitor could significantly reverse the improvement of high- dose paconiflorin (P<0.01). CONCLUSIONS Paeoniflorin can repair intestinal epithelial cell damage in mice, improve tight junctions between epithelial cells, upregulate the expression of related proteins, and promote the expression and secretion of antioxidant-promoting molecules, thereby ameliorating UC; its mechanism may be associated with activating AMPK/Nrf2 antioxidant pathway.
5.Feixin Decoction Treats Hypoxic Pulmonary Hypertension by Regulating Pyroptosis in PASMCs via PPARγ/NF-κB/NLRP3 Signaling Pathway
Junlan TAN ; Xianya CAO ; Runxiu ZHENG ; Wen ZHANG ; Chao ZHANG ; Jian YI ; Feiying WANG ; Xia LI ; Jianmin FAN ; Hui LIU ; Lan SONG ; Aiguo DAI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(18):1-9
ObjectiveTo investigate the mechanism by which Feixin decoction treats hypoxic pulmonary hypertension (HPH) by regulating the peroxisome proliferator-activated receptor gamma (PPARγ)/nuclear factor-kappa B (NF-κB)/NOD-like receptor pyrin domain containing 3 (NLRP3) signaling pathway. MethodsForty-eight male SD rats were randomly allocated into normal, hypoxia, and low-, medium- and high-dose (5.85, 11.7, 23.4 g·kg-1, respectively) Feixin decoction groups, with 8 rats in each group. Except the normal group, the remaining five groups were placed in a hypoxia chamber with an oxygen concentration of (10.0±0.5)% for 8 h per day, 28 days, and administrated with corresponding drugs during the modeling process. After 4 weeks of treatment, echocardiographic parameters [pulmonary artery acceleration time (PAT), pulmonary artery ejection time (PET), right ventricular anterior wall thickness (RVAWd), and tricuspid annular plane systolic excursion (TAPSE)] were measured for each group. The right ventricular systolic pressure (RVSP) was measured by the right heart catheterization method, and the right ventricular hypertrophy index (RVHI) was calculated by weighing the heart. The pathological changes in pulmonary arterioles were observed by hematoxylin-eosin staining. The co-localization of α-smooth muscle actin (α-SMA) with NLRP3, N-terminal gasdermin D (N-GSDMD), and cysteinyl aspartate-specific proteinase-1 (Caspase-1) in pulmonary arteries was detected by immunofluorescence. The protein levels of PPARγ, NF-κB, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), N-GSDMD, interleukin-1β (IL-1β), interleukin-18(IL-18), and cleaved Caspase-1 in the lung tissue was determined by Western blot. The ultrastructural changes in pulmonary artery smooth muscle cells (PASMCs) were observed by transmission electron microscopy. ResultsCompared with the normal group, the hypoxia group showed increased RVSP and RVHI (P<0.01), decreased right heart function (P<0.01), increased pulmonary vascular remodeling (P<0.01), increased co-localization of α-SMA with NLRP3, N-GSDMD, and Caspase-1 in pulmonary arterioles (P<0.01), up-regulated protein levels of NF-κB, NLRP3, ASC, N-GSDMD, IL-1β, IL-18, and cleaved Caspase-1 in the lung tissue (P<0.05, P<0.01), a down-regulated protein level of PPARγ (P<0.05, P<0.01), and pyroptosis in PASMCs. Compared with the hypoxia group, Feixin decoction reduced RVSP and RVHI, improved the right heart function and ameliorated pulmonary vascular remodeling (P<0.05, P<0.01), decreased the co-localization of α-SMA with NLRP3, N-GSDMD, and Caspase-1 (P<0.05, P<0.01), down-regulated the protein levels of NF-κB, NLRP3, ASC, N-GSDMD, IL-1β, IL-18, and cleaved Caspase-1 in the lung tissue (P<0.05, P<0.01), up-regulated the protein level of PPARγ (P<0.05, P<0.01), and alleviated pyroptosis in PASMCs. ConclusionFeixin decoction can ameliorate pulmonary vascular remodeling and right heart dysfunction in chronically induced HPH rats by regulating pyroptosis in PASMCs through the PPARγ/NF-κB/NLRP3 pathway.
6.Re-admission risk prediction models for patients with heart failure after discharge: A systematic review
Ruilei GAO ; Dan WANG ; Guohua DAI ; Wulin GAO ; Hui GUAN ; Xueyan DONG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(05):677-684
Objective To systematically evaluate the predictive models for re-admission in patients with heart failure (HF) in China. Methods Studies related to the risk prediction model for HF patient re-admission published in The Cochrane Library, PubMed, EMbase, CNKI, and other databases were searched from their inception to April 30, 2024. The prediction model risk of bias assessment tool was used to assess the risk of bias and applicability of the included literature, relevant data were extracted to evaluate the model quality. Results Nineteen studies were included, involving a total of 38 predictive models for HF patient re-admission. Comorbidities such as diabetes, N-terminal pro B-type natriuretic peptide/brain natriuretic peptide, chronic renal insufficiency, left ventricular ejection fraction, New York Heart Association cardiac function classification, and medication adherence were identified as primary predictors. The area under the receiver operating characteristic curve ranged from 0.547 to 0.962. Thirteen studies conducted internal validation, one study conducted external validation, and five studies performed both internal and external validation. Seventeen studies evaluated model calibration, while five studies assessed clinical feasibility. The presentation of the models was primarily in the form of nomograms. All studies had a high overall risk of bias. Conclusion Most predictive models for HF patient re-admission in China demonstrate good discrimination and calibration. However, the overall research quality is suboptimal. There is a need to externally validate and calibrate existing models and develop more stable and clinically applicable predictive models to assess the risk of HF patient re-admission and identify relevant patients for early intervention.
7.Application and Advance of Image Compression Algorithms in Medical Imaging
Jiawen SHANG ; Peng HUANG ; Zhixing CHANG ; Yuhan FAN ; Zhihui HU ; Ke ZHANG ; Jianrong DAI ; Hui YAN
Medical Journal of Peking Union Medical College Hospital 2025;16(5):1281-1290
Medical imaging technology plays a crucial role in clinical diagnosis and treatment. Image compression technology provides robust technical support for the storage and transmission of massive medical imaging data, serving as an effective safeguard for hospital data backup and telemedicine. The technology holds broad application prospects in the medical field, enabling the processing of various imaging modalities, multidimensional imaging, and medical video imaging. This study elaborates on general image and video compression algorithms, the application of compression algorithms in the medical field, and the performance metrics of medical image compression, thereby providing critical technical support for enhancing clinical diagnostic efficiency and data management security.
8.Association between QRS voltages and amyloid burden in patients with cardiac amyloidosis.
Jing-Hui LI ; Changcheng LI ; Yucong ZHENG ; Kai YANG ; Yan HUANG ; Huixin ZHANG ; Xianmei LI ; Xiuyu CHEN ; Linlin DAI ; Tian LAN ; Yang SUN ; Minjie LU ; Shihua ZHAO
Chinese Medical Journal 2024;137(3):365-367
9.Qualitative Study of Primary Caregiver Load Experience in Colorectal Stoma Patients
Wenqing DAI ; Jingrong WANG ; Xia XIN ; Hui FAN ; Xianzhen JIN
Chinese Medical Ethics 2024;35(3):273-276
To deeply explore the load experience of primary caregivers of colorectal stoma patients, analyze their psychological load, understand their load experience when caring for patients, so as to provide theoretical basis for promoting patients’ home rehabilitation and continuous nursing. A semi-structured interview was conducted with the primary caregivers of 10 patients with permanent stoma in a tertiary hospital in Xi’an using a phenomenological research method, and the data were summarized and refined by Colaizzi 7-step analysis. A total of four themes were extracted: complex emotional reactions, lack of knowledge about stoma care, a huge care load on the shoulder, and social and financial support needed. The primary caregivers of colorectal stoma patients have a certain degree of care load in the daily care of the patients. Health care professionals should pay attention to the psycho-emotional changes of these individuals and take targeted interventions to reduce the psychological load of the caregivers and improve the quality of life of the patients and their caregivers.
10.Effects of Modified Xiaoyao Powder (逍遥散) on the Programmed Cell Death of Hypothalamic Dopaminergic Neurons in Rat Model of Hyperprolactinemia with Liver Depression and Spleen Deficiency
Yan LI ; Yan LI ; Kaixin LIU ; Kangli DAI ; Xiao LIU ; Hui YANG ; Dan LUO
Journal of Traditional Chinese Medicine 2024;65(3):317-323
ObjectiveTo investigate the possible mechanisms of modified Xiaoyao Powder (逍遥散) in the treatment of hyperprolactinemia (HPRL) with liver constraint and spleen deficiency. MethodsNinety-six female SD rats were randomly divided into a normal group (n=16) and a modeling group (n=80). In the modeling group, rats were subjected to chronic unpredictable stress combined with intraperitoneal injection of metoclopramide to establish a rat model of HPRL with liver constraint and spleen deficiency. The 80 successfully modeled rats were randomly divided into a model group, a high, medium, and low-dose group of modified Xiaoyao Powder, and a bromocriptine group, with 16 rats in each group. The high, medium, and low-dose groups of modified Xiaoyao Powder were orally administered doses of 60, 30, and 15 g/(kg·d) respectively, the bromocriptine group was orally administered bromocriptine tablets at a dose of 1 mg/(kg·d), and the normal group and model group were orally administered 10 ml/(kg·d) of normal saline for 14 consecutive days. ELISA was used to detect serum prolactin (PRL) level; immunohistochemistry was used to determine the expression of tumor necrosis factor-alpha (TNF-α) and tyrosine hydroxylase (TH) in the hypothalamus; Western blot was used to detect the protein expression of tumor necrosis factor receptor 1 (TNFR1) in the hypothalamus; Real-time PCR was used to detect the mRNA expression of receptor interacting protein kinase 3 (RIP3) in the hypothalamus; immunofluorescence was used to detect the co-expression of RIP3 and dopamine neurons in the hypothalamus. ResultsCompared with the normal group, the serum PRL levels were increased in the model group, and the expression of hypothalamic TNF-α, TNFR1, RIP3 mRNA, and the co-expression of RIP3 with dopamine neurons were significantly increased, while TH expression was decreased (P<0.05 or P<0.01). Compared with the model group, the expression of hypothalamic TNF-α was decreased in the bromocriptine group and low-dose group of modified Xiaoyao Powder, and the expression of TH was significantly increased in the medium and high-dose groups of modified Xiaoyao Powder and the bromocriptine group. The serum PRL levels, hypothalamic TNFR1 and RIP3 mRNA expression, and the co-expression of RIP3 with dopamine neurons were significantly decreased in all dose groups of modified Xiaoyao Powder and the bromocriptine group (P<0.05 or P<0.01). Compared with the bromocriptine group, the serum PRL level were significantly increased in the high and low-dose groups of modified Xiaoyao Powder, TH expression was significantly increased in the medium-dose group of modified Xiaoyao Powder, hypothalamic RIP3 mRNA expression was decreased in the low-dose group of modified Xiaoyao Powder, and the co-expression of RIP3 with dopamine neurons was significantly increased in the high-dose group of modified Xiaoyao Powder (P<0.01). ConclusionModified Xiaoyao Powder can regulate the programmed cell death of hypothalamic dopamine neurons, affect DA expression, and regulate PRL levels, which may be one of its mechanisms in the treatment of HPRL with liver constraint and spleen deficiency.

Result Analysis
Print
Save
E-mail