1.Analysis of the current situation of poor vision and wearing of glasses among junior high school students in Xi'an City
Hui GAO ; Jiaqi WANG ; Zhirong LIU ; Jiateng WANG ; Lu YE
International Eye Science 2026;26(1):174-178
AIM:To investigate the prevalence of visual impairment and its correction status among junior high school students in Xi'an, so as to provide evidence for the development of targeted myopia prevention and control strategies.METHODS: A stratified cluster sampling design was adopted. From March to May 2025, students in grades 7-9 were recruited from three schools in Xi'an, Shaanxi Province, China: Dongfang Middle School, the Middle School Attached to Xi'an University of Technology, and the Xingqing Campus of the High School Affiliated to Xi'an Jiaotong University. In total, 3 974 students were invited, including 1 726 in grade 7, 1 206 in grade 8, and 1 042 in grade 9. The visual acuity was measured monocularly using a 5 m standard logarithmic visual acuity chart, with the fellow eye occluded; the line corresponding to the smallest optotype that could be correctly identified was recorded as the visual acuity value. Non-cycloplegic autorefraction was performed with a desktop autorefractor to obtain spherical equivalent(SE)values for refractive error screening.RESULTS: This study initially included 3 974 students, of whom 32 did not participate in the vision test, resulting in 3 942 students being included in the final analysis. Among them, 3 067(77.80%)were identified with poor vision. The prevalence of myopia was 81.47%(1 746)in males and 87.55%(1 575)in females(P<0.01). A stratified analysis by grade showed myopia rates of 81.72%(1 386)in junior grade one, 84.47%(1 017)in junior grade two, and 88.10%(918)in junior grade three, demonstrating a significant upward trend with increasing grade level(χ2=19.8484, P<0.01). Among the 3 321 myopic students, 2 287 adopted corrective measures. The rates of full correction, under-correction, and non-correction among all myopic students were 48.15%(1 599), 20.71%(688), and 31.14%(1 034), respectively. The rate of non-correction was significantly higher in male students than in females(32.70% vs 29.40%, χ2=4.2222, P<0.05).CONCLUSION: The findings indicate a high prevalence of visual impairment among junior high school students in Xi'an, coupled with suboptimal spectacle-wearing and full-correction rates. There is an urgent need for collaborative efforts across society, schools, and families to implement effective interventions to slow the onset and progression of myopia in this population.
2.Current Status and Strategies of Integrated Traditional Chinese and Western Medicine in the Treatment of Helicobacter pylori Infection
Xuezhi ZHANG ; Xia DING ; Zhen LIU ; Hui YE ; Xiaofen JIA ; Hong CHENG ; Zhenyu WU ; Xudong TANG
Journal of Traditional Chinese Medicine 2026;67(1):111-116
This paper systematically reviews the current status of integrated traditional Chinese and western medicine in the treatment of Helicobacter pylori (Hp) infection, as well as recent progress in clinical and basic research both in China and internationally. It summarizes the advantages of traditional Chinese medicine (TCM) in Hp infection management, including improving Hp eradication rates, enhancing antibiotic sensitivity, reducing antimicrobial resistance, decreasing drug-related adverse effects, and ameliorating gastric mucosal lesions. These advantages are particularly evident in patients who are intolerant to bismuth-containing regimens, those with refractory Hp infection, and individuals with precancerous gastric lesions. An integrated, whole-process management approach and individualized, staged comprehensive treatment strategies combining TCM and western medicine are proposed for Hp infection. Future prevention and control of Hp infection should adopt an integrative Chinese-western medical strategy, emphasizing prevention, strengthening primary care, implementing proactive long-term monitoring, optimizing screening strategies, and advancing the development of novel technologies and mechanistic studies of Chinese herbal interventions. These efforts aim to provide a theoretical basis and practical pathways for the establishment and improvement of Hp infection prevention and control systems.
3.Mechanism of Yishen Huoxue Tongqiao Formula in Improving Unilateral Vestibular Labyrinth Destruction by Regulating Metabolism-neuroplasticity
Yu TIAN ; Hui LENG ; Rupeng QU ; Xianglong HAO ; Aiping WANG ; Lei SHI ; Zhongyuan QU ; Ye DONG ; Xiande MA ; Yangling HUANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):54-64
ObjectiveThis study aims to explore the mechanism by which Yishen Huoxue Tongqiao Formula improves metabolism-neuroplasticity and treats unilateral vestibular labyrinth destruction by regulating the metabolic balance of glutamate (Glu)/γ-aminobutyric acid (GABA). Methods48 Sprague-Dawley (SD) adult rats were randomly divided into the sham operation group, model group, Yishen Huoxue Tongqiao Formula groups with low, medium, and high doses (9.20, 18.39, 36.78 g·kg-1), and betahistine group (1.62 mg·kg-1). A unilateral vestibular labyrinth destruction (vestibular dysfunction) model was established by intratympanic injection of chloroform into the right ear, while the control group received intratympanic injection of normal saline. Drugs were administered once daily for seven consecutive days. During the period, behavioral tests were performed to evaluate the behaviors of rats after unilateral vestibular labyrinth destruction. Hematoxylin-eosin (HE) staining and Nissl staining were used to observe the neuronal morphology in the medial vestibular nucleus. Golgi staining was employed to assess the number of dendritic spines of neurons in the medial vestibular nucleus. Ultra-performance liquid chromatography-tandem mass spectrometry (LC-ESI-MS/MS) was utilized to detect Glu/GABA. Immunofluorescence and immunohistochemistry were used to detect the expressions of neuronal nuclei (NeuN), growth-associated protein 43 (GAP-43), and glial fibrillary acidic protein (GFAP). Western blot and real-time fluorescent quantitative polymerase chain reaction (Real-time PCR) were applied to determine the expressions of glutamate-immunoreactive (Glu-IR), GABA, GFAP, postsynaptic density protein 95 (PSD-95), and GAP-43. ResultsCompared with the sham operation group, the model group presented with head deviation, balance disorder, increased tail suspension score, nuclear consolidation of medial vestibular nerve neurons, and decreased Nissl bodies (P<0.01). The number of dendritic spines in neurons and NeuN-positive cells decreased. The content of Glu decreased. The content of GABA increased (Glu/GABA decreased). The expression of GAP-43 was down-regulated, and GFAP was up-regulated (P<0.05, P<0.01). The expressions of Glu-IR, PSD-95, and GAP-43 proteins, as well as Glu-IR mRNA decreased, while the expressions of GABA and GFAP proteins and mRNA increased (P<0.05, P<0.01). Compared with those in the model group, the head deviation, imbalanced behavior, and tail suspension scores in each treatment group decreased, with alleviated neuronal injury and recovered Nissl bodies (P<0.01). The number of dendritic spines of neurons increased, and the number of NeuN-positive cells rebounded. The content of Glu increased, and the content of GABA decreased (Glu/GABA increased). GFAP was down-regulated, and GAP-43 was up-regulated (P<0.05, P<0.01). The expressions of Glu-IR, PMD-95, and GAP-43 proteins, as well as Glu-IR mRNA increased, while the expressions of GABA and GFAP proteins and mRNA decreased. The effect was more significant in the high-dose group (P<0.01). ConclusionThe Yishen Huoxue Tongqiao Formula can alleviate vestibular dysfunction, and its mechanism may be associated with regulating the metabolic balance of Glu/GABA, mitigating neural damage, improving synaptic plasticity (promoting GAP-43 expression and inhibiting GFAP expression), and facilitating vestibular compensation.
4.Hypoglycemic Effect and Mechanism of ICK Pattern Peptides
Lin-Fang CHEN ; Jia-Fan ZHANG ; Ye-Ning GUO ; Hui-Zhong HUANG ; Kang-Hong HU ; Chen-Guang YAO
Progress in Biochemistry and Biophysics 2025;52(1):50-60
Diabetes is a very complex endocrine disease whose common feature is the increase in blood glucose concentration. Persistent hyperglycemia can lead to blindness, kidney and heart disease, neurodegeneration, and many other serious complications that have a significant impact on human health and quality of life. The number of people with diabetes is increasing yearly. The global diabetes prevalence in 20-79 year olds in 2021 was estimated to be 10.5% (536.6 million), and it will rise to 12.2% (783.2 million) in 2045. The main modes of intervention for diabetes include medication, dietary management, and exercise conditioning. Medication is the mainstay of treatment. Marketed diabetes drugs such as metformin and insulin, as well as GLP-1 receptor agonists, are effective in controlling blood sugar levels to some extent, but the preventive and therapeutic effects are still unsatisfactory. Peptide drugs have many advantages such as low toxicity, high target specificity, and good biocompatibility, which opens up new avenues for the treatment of diabetes and other diseases. Currently, insulin and its analogs are by far the main life-saving drugs in clinical diabetes treatment, enabling effective control of blood glucose levels, but the risk of hypoglycemia is relatively high and treatment is limited by the route of delivery. New and oral anti-diabetic drugs have always been a market demand and research hotspot. Inhibitor cystine knot (ICK) peptides are a class of multifunctional cyclic peptides. In structure, they contain three conserved disulfide bonds (C3-C20, C7-C22, and C15-C32) form a compact “knot” structure, which can resist degradation of digestive protease. Recent studies have shown that ICK peptides derived from legume, such as PA1b, Aglycin, Vglycin, Iglycin, Dglycin, and aM1, exhibit excellent regulatory activities on glucose and lipid metabolism at the cellular and animal levels. Mechanistically, ICK peptides promote glucose utilization by muscle and liver through activation of IR/AKT signaling pathway, which also improves insulin resistance. They can repair the damaged pancrease through activation of PI3K/AKT/Erk signaling pathway, thus lowering blood glucose. The biostability and hypoglycemic efficacy of the ICK peptides meet the requirements for commercialization of oral drugs, and in theory, they can be developed into natural oral anti-diabetes peptide drugs. In this review, the structural properties, activity and mechanism of ICK pattern peptides in regulating glucose and lipid metabolism were summaried, which provided a reference for the development of new oral peptides for diabetes.
5.Exploring mechanism of Porana racemosa Roxb. in treating rheumatoid arthritis based on integration of network pharmacology and molecular docking combined with experimental validation
Chen-yu YE ; Ning LI ; Yin-zi CHEN ; Tong QU ; Jing HU ; Zhi-yong CHEN ; Hui REN
Acta Pharmaceutica Sinica 2025;60(1):117-129
Through network pharmacology and molecular docking technology, combined with
6.Heterogeneity of Adipose Tissue From a Single-cell Transcriptomics Perspective
Yong-Lang WANG ; Si-Si CHEN ; Qi-Long LI ; Yu GONG ; Xin-Yue DUAN ; Ye-Hui DUAN ; Qiu-Ping GUO ; Feng-Na LI
Progress in Biochemistry and Biophysics 2025;52(4):820-835
Adipose tissue is a critical energy reservoir in animals and humans, with multifaceted roles in endocrine regulation, immune response, and providing mechanical protection. Based on anatomical location and functional characteristics, adipose tissue can be categorized into distinct types, including white adipose tissue (WAT), brown adipose tissue (BAT), beige adipose tissue, and pink adipose tissue. Traditionally, adipose tissue research has centered on its morphological and functional properties as a whole. However, with the advent of single-cell transcriptomics, a new level of complexity in adipose tissue has been unveiled, showing that even under identical conditions, cells of the same type may exhibit significant variation in morphology, structure, function, and gene expression——phenomena collectively referred to as cellular heterogeneity. Single-cell transcriptomics, including techniques like single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq), enables in-depth analysis of the diversity and heterogeneity of adipocytes at the single-cell level. This high-resolution approach has not only deepened our understanding of adipocyte functionality but also facilitated the discovery of previously unidentified cell types and gene expression patterns that may play key roles in adipose tissue function. This review delves into the latest advances in the application of single-cell transcriptomics in elucidating the heterogeneity and diversity within adipose tissue, highlighting how these findings have redefined the understanding of cell subpopulations within different adipose depots. Moreover, the review explores how single-cell transcriptomic technologies have enabled the study of cellular communication pathways and differentiation trajectories among adipose cell subgroups. By mapping these interactions and differentiation processes, researchers gain insights into how distinct cellular subpopulations coordinate within adipose tissues, which is crucial for maintaining tissue homeostasis and function. Understanding these mechanisms is essential, as dysregulation in adipose cell interactions and differentiation underlies a range of metabolic disorders, including obesity and diabetes mellitus type 2. Furthermore, single-cell transcriptomics holds promising implications for identifying therapeutic targets; by pinpointing specific cell types and gene pathways involved in adipose tissue dysfunction, these technologies pave the way for developing targeted interventions aimed at modulating specific adipose subpopulations. In summary, this review provides a comprehensive analysis of the role of single-cell transcriptomic technologies in uncovering the heterogeneity and functional diversity of adipose tissues.
7.Oral Microbiota and Childhood Growth and Development
Rongrong YE ; Hanze DU ; Shi CHEN ; Daowei LI ; Hui PAN
Medical Journal of Peking Union Medical College Hospital 2025;16(3):545-551
Childhood is a critical period for growth and development, and the oral microbiota, as the second most diverse microbial community in the human body, plays a pivotal role in maintaining children's health. Recent studies have demonstrated that dysbiosis of the oral microbiota not only contributes to oral diseases such as dental caries and periodontitis but may also influence the development of children's skeletal, nervous, digestive, cardiovascular, and immune systems through mechanisms involving inflammatory responses, metabolic regulation, and cross-organ communication networks. This review systematically examines the role of the oral microbiota in childhood growth and development and, guided by the core principles of the "active health" model, proposes multiple intervention strategies—including probiotics, xylitol, and mouthwashes—to optimize children's health through early oral microbiota modulation.
8.Identification and Potential Clinical Utility of Common Genetic Variants in Gestational Diabetes among Chinese Pregnant Women
Claudia Ha-ting TAM ; Ying WANG ; Chi Chiu WANG ; Lai Yuk YUEN ; Cadmon King-poo LIM ; Junhong LENG ; Ling WU ; Alex Chi-wai NG ; Yong HOU ; Kit Ying TSOI ; Hui WANG ; Risa OZAKI ; Albert Martin LI ; Qingqing WANG ; Juliana Chung-ngor CHAN ; Yan Chou YE ; Wing Hung TAM ; Xilin YANG ; Ronald Ching-wan MA
Diabetes & Metabolism Journal 2025;49(1):128-143
Background:
The genetic basis for hyperglycaemia in pregnancy remain unclear. This study aimed to uncover the genetic determinants of gestational diabetes mellitus (GDM) and investigate their applications.
Methods:
We performed a meta-analysis of genome-wide association studies (GWAS) for GDM in Chinese women (464 cases and 1,217 controls), followed by de novo replications in an independent Chinese cohort (564 cases and 572 controls) and in silico replication in European (12,332 cases and 131,109 controls) and multi-ethnic populations (5,485 cases and 347,856 controls). A polygenic risk score (PRS) was derived based on the identified variants.
Results:
Using the genome-wide scan and candidate gene approaches, we identified four susceptibility loci for GDM. These included three previously reported loci for GDM and type 2 diabetes mellitus (T2DM) at MTNR1B (rs7945617, odds ratio [OR], 1.64; 95% confidence interval [CI],1.38 to 1.96]), CDKAL1 (rs7754840, OR, 1.33; 95% CI, 1.13 to 1.58), and INS-IGF2-KCNQ1 (rs2237897, OR, 1.48; 95% CI, 1.23 to 1.79), as well as a novel genome-wide significant locus near TBR1-SLC4A10 (rs117781972, OR, 2.05; 95% CI, 1.61 to 2.62; Pmeta=7.6×10-9), which has not been previously reported in GWAS for T2DM or glycaemic traits. Moreover, we found that women with a high PRS (top quintile) had over threefold (95% CI, 2.30 to 4.09; Pmeta=3.1×10-14) and 71% (95% CI, 1.08 to 2.71; P=0.0220) higher risk for GDM and abnormal glucose tolerance post-pregnancy, respectively, compared to other individuals.
Conclusion
Our results indicate that the genetic architecture of glucose metabolism exhibits both similarities and differences between the pregnant and non-pregnant states. Integrating genetic information can facilitate identification of pregnant women at a higher risk of developing GDM or later diabetes.
9.Criteria and prognostic models for patients with hepatocellular carcinoma undergoing liver transplantation
Meng SHA ; Jun WANG ; Jie CAO ; Zhi-Hui ZOU ; Xiao-ye QU ; Zhi-feng XI ; Chuan SHEN ; Ying TONG ; Jian-jun ZHANG ; Seogsong JEONG ; Qiang XIA
Clinical and Molecular Hepatology 2025;31(Suppl):S285-S300
Hepatocellular carcinoma (HCC) is a leading cause of cancer-associated death globally. Liver transplantation (LT) has emerged as a key treatment for patients with HCC, and the Milan criteria have been adopted as the cornerstone of the selection policy. To allow more patients to benefit from LT, a number of expanded criteria have been proposed, many of which use radiologic morphological characteristics with larger and more tumors as surrogates to predict outcomes. Other groups developed indices incorporating biological variables and dynamic markers of response to locoregional treatment. These expanded selection criteria achieved satisfactory results with limited liver supplies. In addition, a number of prognostic models have been developed using clinicopathological characteristics, imaging radiomics features, genetic data, and advanced techniques such as artificial intelligence. These models could improve prognostic estimation, establish surveillance strategies, and bolster long-term outcomes in patients with HCC. In this study, we reviewed the latest findings and achievements regarding the selection criteria and post-transplant prognostic models for LT in patients with HCC.
10.The efficacy of skin soft tissue expansion and recombinant human epidermal growth factor in the repair of second-degree scald scars: a prospective single-blind randomized controlled trial
Hui HE ; Miaomiao XU ; Wenlu ZHANG ; Jia YE
Annals of Surgical Treatment and Research 2025;108(5):325-330
Purpose:
This research observed the efficacy and safety of soft tissue expansion combined with recombinant human epidermal growth factor (rhEGF) in repairing second-degree scald scars.
Methods:
This study conducted a prospective, single-blind, randomized controlled trial. Eighty-four patients with deep second-degree scald scars were evenly divided into the control and observation groups. The control group was treated with soft tissue expansion, and the observation group was additionally treated with rhEGF. The skin expansion and wound healing times were compared. The changes in wound exudate and inflammation around the wound were observed after first-stage surgery. The hydroxyproline (OHP) and collagen I/III ratios were compared during the second stage of surgery.The complications and repair effects during treatment were evaluated.
Results:
The observation group exhibited lower expansion time, immediate retraction rate, and wound healing time, higher skin expansion rate, higher wound exudate score and inflammation score, higher OHP, lower collagen I/III, lower complication rate, and higher total effective rate than the control group (all P < 0.05).
Conclusion
Skin soft tissue expansion combined with rhEGF is more effective in repairing second-degree scald scars, which can effectively increase skin expansion area and reduce wound infection and complications.

Result Analysis
Print
Save
E-mail