1.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
2.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
3.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
4.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
5.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
6.Epidemiological Investigation of Dampness Syndrome Manifestations in the Population at Risk of Cerebrovascular Disease
Xiao-Jia NI ; Hai-Yan HUANG ; Qing SU ; Yao XU ; Ling-Ling LIU ; Zhuo-Ran KUANG ; Yi-Hang LI ; Yi-Kai ZHANG ; Miao-Miao MENG ; Yi-Xin GUO ; Xiao-Bo YANG ; Ye-Feng CAI
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(3):531-539
Objective To make an epidemiological investigation on traditional Chinese medicine(TCM)dampness syndrome manifestations in the population at risk of cerebrovascular diseases in Guangdong area.Methods A cross-sectional study was conducted to analyze the clinical data related to the risk of cerebrovascular diseases in 330 Guangdong permanent residents.The diagnosis of dampness syndrome,quantitative scoring of dampness syndrome and rating of the risk of stroke were performed for the investigation of the distribution pattern of dampness syndrome and its influencing factors.Results(1)A total of 306(92.73%)study subjects were diagnosed as dampness syndrome.The percentage of dampness syndrome in the risk group was 93.82%(258/275),which was slightly higher than that of the healthy group(48/55,87.27%),but the difference was not statistically significant(χ2 = 2.91,P = 0.112).The quantitative score of dampness syndrome in the risk group was higher than that of the healthy group,and the difference was statistically significance(Z =-2.24,P = 0.025).(2)Among the study subjects at risk of cerebrovascular disease,evaluation time(χ2 = 26.11,P = 0.001),stroke risk grading(χ2= 8.85,P = 0.031),and history of stroke or transient ischemic attack(TIA)(χ2 = 9.28,P = 0.015)were the factors influencing the grading of dampness syndrome in the population at risk of cerebrovascular disease.Conclusion Dampness syndrome is the common TCM syndrome in the population of Guangdong area.The manifestations of dampness syndrome are more obvious in the population with risk factors of cerebrovascular disease,especially in the population at high risk of stroke,and in the population with a history of stroke or TIA.The assessment and intervention of dampness syndrome should be taken into account for future project of stroke prevention in Guangdong.
7.Application of a deep learning-based three-phase CT image models for the automatic segmentation of gross tumor volumes in nasopharyngeal carcinoma
Guorong YAO ; Kai SHEN ; Feng ZHAO ; Siyuan WANG ; Zhongjie LU ; Kejie HUANG ; Senxiang YAN
Chinese Journal of Radiological Medicine and Protection 2024;44(2):111-118
Objective:To investigate the effectiveness and feasibility of a 3D U-Net in conjunction with a three-phase CT image segmentation model in the automatic segmentation of GTVnx and GTVnd in nasopharyngeal carcinoma.Methods:A total of 645 sets of computed tomography (CT) images were retrospectively collected from 215 nasopharyngeal carcinoma cases, including three phases: plain scan (CT), contrast-enhanced CT (CTC), and delayed CT (CTD). The dataset was grouped into a training set consisting of 172 cases and a test set comprising 43 cases using the random number table method. Meanwhile, six experimental groups, A1, A2, A3, A4, B1, and B2, were established. Among them, the former four groups used only CT, only CTC, only CTD, and all three phases, respectively. The B1 and B2 groups used phase fine-tuning CTC models. The Dice similarity coefficient (DSC) and 95% Hausdorff distance (HD95) served as quantitative evaluation indicators.Results:Compared to only monophasic CT (group A1/A2/A3), triphasic CT (group A4) yielded better result in the automatic segmentation of GTVnd (DSC: 0.67 vs. 0.61, 0.64, 0.64; t = 7.48, 3.27, 4.84, P < 0.01; HD95: 36.45 vs. 79.23, 59.55, 65.17; t = 5.24, 2.99, 3.89, P < 0.01), with statistically significant differences ( P < 0.01). However, triphasic CT (group A4) showed no significant enhancement in the automatic segmentation of GTVnx compared to monophasic CT (group A1/A2/A3) (DSC: 0.73 vs. 0.74, 0.74, 0.73; HD95: 14.17 mm vs. 8.06, 8.11, 8.10 mm), with no statistically significant difference ( P > 0.05). For the automatic segmentation of GTVnd, group B1/B2 showed higher automatic segmentation accuracy compared to group A1 (DSC: 0.63, 0.63 vs. 0.61, t = 4.10, 3.03, P<0.01; HD95: 58.11, 50.31 mm vs. 79.23 mm, t = 2.75, 3.10, P < 0.01). Conclusions:Triphasic CT scanning can improve the automatic segmentation of the GTVnd in nasopharyngeal carcinoma. Additionally, phase fine-tuning models can enhance the automatic segmentation accuracy of the GTVnd on plain CT images.
8.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
9.Application of hypotension prediction index in intraoperative hemodynamic management of robot-assisted laparoscopic cystectomy:A case report and literature review
Wenqing RUAN ; Zerun FU ; Yi HUANG ; Longyun LI ; Yao SUN ; Kai LI
Journal of Jilin University(Medicine Edition) 2024;50(4):1130-1136
Objective:To analyze the intraoperative hemodynamic management by hypotension prediction index(HPI)in one patient underwent robot-assisted laparoscopic cystectomy,and to provide the reference for anesthesia monitoring and hemodynamic management in the similar major surgery.Methods:The clinical data,intraoperative hemodynamic data,usage and dosage of vasoactive drugs,and clinical outcomes of one patient underwent robot-assisted laparoscopic cystectomy with HPI-guided intraoperative hemodynamic management were retrospectively analyzed,and the relevant literatures were reviewed.Results:The patient,a 72-year-old female,was admitted due to macroscopic hematuria for 5 months accompanied by dysuria for 3 months.The cystoscope results showed a 7 cm× 7 cm× 5 cm mass on the right side of the bladder trigone and a 4 cm × 3 cm × 3 cm mass near the bladder neck.The positron emission tomography/computed tomography(PET/CT)results showed thickening of the right posterior bladder wall with high metabolism,and the preliminary diagnosis was bladder malignancy.After preoperative anesthesia evaluation,the robot-assisted laparoscopic cystectomy was planned.After entering the operating room,the routine monitoring was conducted,and the monitor equipped with HPI software was used to guide intraoperative hemodynamic management.After routine anesthesia induction,the tracheal intubation was performed by video laryngoscope.The patient experienced intraoperative hypotension(IOH)for six times,the cumulative time of mean arterial pressure(MAP)<65 mmHg was 13.7 min,accounting for 4.40%of the anesthesia duration,and the time-weighted average of MAP<65 mmHg was 0.28 mmHg.The time range with HPI≥85 roughly overlapped with and included the period of MAP<65 mmHg.At 146 time points with HPI≥85,the MAP remained greater than 65 mmHg at 68.5%(100/146)of the points.At 47 time points with MAP<65 mmHg,HPI≥85 occurred at 97.9%(46/47)of the points.On the first postoperative day,the patient's hypersensitive cardiac troponin I was<0.01 μg·L-1,and no perioperative adverse events occurred.The patient was discharged on the eighth day.Conclusion:HPI can promptly and accurately predict the occurrence of IOH in the patients undergoing robot-assisted laparoscopic cystectomy.The use of HPI-based hypotension correction strategies during surgery can maintain the time-weighted average of MAP<65 mmHg at a lower level.
10.Bioequivalence of lamotrigine tablets in Chinese healthy subjects
Jin-Sheng JIANG ; Hong-Ying CHEN ; Jun CHEN ; Yao CHEN ; Kai-Yi CHEN ; Xue-Hua ZHANG ; Jie HU ; Xin LIU ; Xin-Yi HUANG ; Dong-Sheng OUYANG
The Chinese Journal of Clinical Pharmacology 2024;40(6):894-898
Objective To study the pharmacokinetic characteristics of lamotrigine tablets in Chinese healthy subjects under fasting and fed conditions,and to evaluate the bioequivalence and safety profiles between the domestic test preparation and the original reference preparation.Methods Twenty-four Chinese healthy male and female subjects were enrolled under fasting and fed conditions,18 male and 6 female subjects under fasting conditions,17 male and 7 female subjects under fed conditions.A random,open,single-dose,two preparations,two sequences and double-crossover design was used.Plasma samples were collected over a 72-hour period after give the test or reference preparations 50 mg under fasting and fed conditions.The concentration of lamotrigine in plasma was detected by liquid chromatography-tandem mass spectrometry,and the main pharmacokinetic parameters were calculated to evaluate the bioequivalence by WinNonLin 8.1 program.Results The main pharmacokinetic parameters of single-dose the tested and reference preparations were as follows:The fasting condition Cmax were(910.93±248.02)and(855.87±214.36)ng·mL-1;tmax were 0.50(0.25,4.00)and 1.00(0.25,3.50)h;t1/2 were(36.1±9.2)and(36.0±8.2)h;AUC0_72h were(27 402.40±4 752.00)and(26 933.90±4 085.80)h·ng·mL-1.The fed condition Cmax were(701.62±120.67)and(718.95±94.81)ng·mL-1;tmax were 4.00(1.00,5.00)and 4.00(0.50,5.00)h;t1/2 were(44.2±12.4)and(44.0±12.0)h;AUC0-72h were(30 253.20±7 018.00)and(30 324.60±6 147.70)h·ng·mL-1.The 90%confidence intervals of the geometric mean ratios of Cmax and AUC0-72 hfor the test preparation and reference preparation were all between 80.00%and 125.00%under fasting and fed conditions.Conclusion Two kinds of lamotrigine tablets are bioequivalent,and have similar safety in Chinese healthy male and female subjects under fasting and fed conditions.

Result Analysis
Print
Save
E-mail