1.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
2.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
3.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
4.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
5.Research progress on the application of visual electrophysiological examination in early diagnosis of glaucoma
Chang SUN ; Rong ZHANG ; Xiaolin XIAO ; Minpeng XU ; Dong MING ; Xia HUA
International Eye Science 2025;25(7):1073-1078
Glaucoma is a group of optic nerve disorders characterized by progressive optic nerve atrophy and visual field defects, which can lead to irreversible blindness. Early diagnosis of glaucoma is essential for preventing visual loss. However, due to the absence of obvious early symptoms, the diagnosis of glaucoma remains challenging. Visual electrophysiological examinations, an objective approach for evaluating visual function, have the potential to be used in the early diagnosis of glaucoma. This review integrates the latest publications to introduce visual electrophysiological examination techniques, including electroretinography(ERG)and visual evoked potential(VEP). It also explores the mechanisms underlying these techniques and their application value in the early diagnosis of glaucoma. In addition, this review summarizes the advantages, limitations, and applicable scenarios of different visual electrophysiological techniques. Finally, the review provides an outlook on the development prospects of visual electrophysiological techniques in the early diagnosis of glaucoma. The findings of this review can assist clinicians in selecting appropriate diagnostic methods, promote the innovation and development of early visual electrophysiological diagnostic techniques for glaucoma, and contribute to reducing the risk of blindness caused by glaucoma.
6.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
7.The Near-infrared II Emission of Gold Clusters and Their Applications in Biomedicine
Zhen-Hua LI ; Hui-Zhen MA ; Hao WANG ; Chang-Long LIU ; Xiao-Dong ZHANG
Progress in Biochemistry and Biophysics 2025;52(8):2068-2086
Optical imaging is highly valued for its superior temporal and spatial resolution. This is particularly important in near-infrared II (NIR-II, 1 000-3 000 nm) imaging, which offers advantages such as reduced tissue absorption, minimal scattering, and low autofluorescence. These characteristics make NIR-II imaging especially suitable for deep tissue visualization, where high contrast and minimal background interference are critical for accurate diagnosis and monitoring. Currently, inorganic fluorescent probes—such as carbon nanotubes, rare earth nanoparticles, and quantum dots—offer high brightness and stability. However, they are hindered by ambiguous structures, larger sizes, and potential accumulation toxicity in vivo. In contrast, organic fluorescent probes, including small molecules and polymers, demonstrate higher biocompatibility but are limited by shorter emission wavelengths, lower quantum yields, and reduced stability. Recently, gold clusters have emerged as a promising class of nanomaterials with potential applications in biocatalysis, fluorescence sensing, biological imaging, and more. Water-soluble gold clusters are particularly attractive as fluorescent probes due to their remarkable optical properties, including strong photoluminescence, large Stokes shifts, and excellent photostability. Furthermore, their outstanding biocompatibility—attributed to good aqueous stability, ultra-small hydrodynamic size, and high renal clearance efficiency—makes them especially suitable for biomedical applications. Gold clusters hold significant potential for NIR-II fluorescence imaging. Atomic-precision gold clusters, typically composed of tens to hundreds of gold atoms and measuring only a few nanometers in diameter, possess well-defined three-dimensional structures and clear spatial coordination. This atomic-level precision enables fine-tuned structural regulation, further enhancing their fluorescence properties. Variations in cluster size, surface ligands, and alloying elements can result in distinct physicochemical characteristics. The incorporation of different atoms can modulate the atomic and electronic structures of gold clusters, while diverse ligands can influence surface polarity and steric hindrance. As such, strategies like alloying and ligand engineering are effective in enhancing both fluorescence and catalytic performance, thereby meeting a broader range of clinical needs. In recent years, gold clusters have attracted growing attention in the biomedical field. Their application in NIR-II imaging has led to significant progress in vascular, organ, and tumor imaging. The resulting high-resolution, high signal-to-noise imaging provides powerful tools for clinical diagnostics. Moreover, biologically active gold clusters can aid in drug delivery and disease diagnosis and treatment, offering new opportunities for clinical therapeutics. Despite the notable achievements in fundamental research and clinical translation, further studies are required to address challenges related to the standardized synthesis and complex metabolic behavior of gold clusters. Resolving these issues will help accelerate their clinical adoption and broaden their biomedical applications.
8.Myricetin attenuates renal fibrosis by activating Nrf2/HO-1 pathway to inhibit oxidative stress
Dong-xue LI ; Zhou HUANG ; Han-yu WANG ; Zhi-hao ZHANG ; Ning-hua TAN ; Xue-yang DENG
Acta Pharmaceutica Sinica 2024;59(2):359-367
This paper investigates the effect of myricetin (MYR) on renal fibrosis induced by unilateral ureteral obstruction (UUO) and common bile duct ligation (CBDL) in mice and its mechanism. The animal experiment has been approved by the Ethics Committee of China Pharmaceutical University (NO: 2022-10-020). Thirty-five ICR mice were divided into control, UUO, UUO+MYR, CBDL and CBDL+MYR groups. H&E and Masson staining were used to detect pathological changes in kidney tissues. Western blot (WB) was used to detect the expression of fibrosis-related proteins in renal tissue, and total superoxide dismutase (SOD) activity detection kit (WST-8) was used to detect the changes of total SOD in renal tissue of CBDL mice.
9.Analysis of epidemiological and clinical characteristics of 1247 cases of infectious diseases of the central nervous system
Jia-Hua ZHAO ; Yu-Ying CEN ; Xiao-Jiao XU ; Fei YANG ; Xing-Wen ZHANG ; Zhao DONG ; Ruo-Zhuo LIU ; De-Hui HUANG ; Rong-Tai CUI ; Xiang-Qing WANG ; Cheng-Lin TIAN ; Xu-Sheng HUANG ; Sheng-Yuan YU ; Jia-Tang ZHANG
Medical Journal of Chinese People's Liberation Army 2024;49(1):43-49
Objective To summarize the epidemiological and clinical features of infectious diseases of the central nervous system(CNS)by a single-center analysis.Methods A retrospective analysis was conducted on the data of 1247 cases of CNS infectious diseases diagnosed and treated in the First Medical Center of PLA General Hospital from 2001 to 2020.Results The data for this group of CNS infectious diseases by disease type in descending order of number of cases were viruses 743(59.6%),Mycobacterium tuberculosis 249(20.0%),other bacteria 150(12.0%),fungi 68(5.5%),parasites 18(1.4%),Treponema pallidum 18(1.4%)and rickettsia 1(0.1%).The number of cases increased by 177 cases(33.1%)in the latter 10 years compared to the previous 10 years(P<0.05).No significant difference in seasonal distribution pattern of data between disease types(P>0.05).Male to female ratio is 1.87︰1,mostly under 60 years of age.Viruses are more likely to infect students,most often at university/college level and above,farmers are overrepresented among bacteria and Mycobacterium tuberculosis,and more infections of Treponema pallidum in workers.CNS infectious diseases are characterized by fever,headache and signs of meningeal irritation,with the adductor nerve being the more commonly involved cranial nerve.Matagenomic next-generation sequencing improves clinical diagnostic capabilities.The median hospital days for CNS infectious diseases are 18.00(11.00,27.00)and median hospital costs are ¥29,500(¥16,000,¥59,200).The mortality rate from CNS infectious diseases is 1.6%.Conclusions The incidence of CNS infectious diseases is increasing last ten years,with complex clinical presentation,severe symptoms and poor prognosis.Early and accurate diagnosis and standardized clinical treatment can significantly reduce the morbidity and mortality rate and ease the burden of disease.
10.Sonogenetics and its application in military medicine
Ying-Tan ZHUANG ; Bo-Yu LUO ; Xiao-Dong ZHANG ; Tuo-Yu LIU ; Xin-Yue FAN ; Guo-Hua XIA ; Qing YUAN ; Bin ZHENG ; Yue TENG
Medical Journal of Chinese People's Liberation Army 2024;49(3):360-366
Sonogenetics is an emerging synthetic biology technique that uses sound waves to activate mechanosensitive ion channel proteins on the cell surface to regulate cell behavior and function.Due to the widespread presence of mechanically sensitive ion channel systems in cells and the advantages of non-invasion,strong penetrability,high safety and high accuracy of sonogenetics technology,it has great development potential in basic biomedical research and clinical applications,especially in neuronal regulation,tumor mechanism research,sonodynamic therapy and hearing impairment.This review discusses the basic principles of sonogenetics,the development status of sonogenetics and its application in the prevention and treatment of noise-induced hearing loss,summarizes and analyzes the current challenges and future development direction,thus providing a reference for further research and development of sonogenetics in the field of military medicine.

Result Analysis
Print
Save
E-mail