1.Neuroplasticity Mechanisms of Exercise-induced Brain Protection
Li-Juan HOU ; Lan-Qun MAO ; Wei CHEN ; Ke LI ; Xu-Dong ZHAO ; Yin-Hao WANG ; Zi-Zheng YANG ; Tian-He WEI
Progress in Biochemistry and Biophysics 2025;52(6):1435-1452
		                        		
		                        			
		                        			Neuroscience is a significant frontier discipline within the natural sciences and has become an important interdisciplinary frontier scientific field. Brain is one of the most complex organs in the human body, and its structural and functional analysis is considered the “ultimate frontier” of human self-awareness and exploration of nature. Driven by the strategic layout of “China Brain Project”, Chinese scientists have conducted systematic research focusing on “understanding the brain, simulating the brain, and protecting the brain”. They have made breakthrough progress in areas such as the principles of brain cognition, mechanisms and interventions for brain diseases, brain-like computation, and applications of brain-machine intelligence technology, aiming to enhance brain health through biomedical technology and improve the quality of human life. Due to limited understanding and comprehension of neuroscience, there are still many important unresolved issues in the field of neuroscience, resulting in a lack of effective measures to prevent and protect brain health. Therefore, in addition to actively developing new generation drugs, exploring non pharmacological treatment strategies with better health benefits and higher safety is particularly important. Epidemiological data shows that, exercise is not only an indispensable part of daily life but also an important non-pharmacological approach for protecting brain health and preventing neurodegenerative diseases, forming an emerging research field known as motor neuroscience. Basic research in motor neuroscience primarily focuses on analyzing the dynamic coding mechanisms of neural circuits involved in motor control, breakthroughs in motor neuroscience research depend on the construction of dynamic monitoring systems across temporal and spatial scales. Therefore, high spatiotemporal resolution detection of movement processes and movement-induced changes in brain structure and neural activity signals is an important technical foundation for conducting motor neuroscience research and has developed a set of tools based on traditional neuroscience methods combined with novel motor behavior decoding technologies, providing an innovative technical platform for motor neuroscience research. The protective effect of exercise in neurodegenerative diseases provides broad application prospects for its clinical translation. Applied research in motor neuroscience centers on deciphering the regulatory networks of neuroprotective molecules mediated by exercise. From the perspectives of exercise promoting neurogenesis and regeneration, enhancing synaptic plasticity, modulating neuronal functional activity, and remodeling the molecular homeostasis of the neuronal microenvironment, it aims to improve cognitive function and reduce the incidence of Parkinson’s disease and Alzheimer’s disease. This has also advanced research into the molecular regulatory networks mediating exercise-induced neuroprotection and facilitated the clinical application and promotion of exercise rehabilitation strategies. Multidimensional analysis of exercise-regulated neural plasticity is the theoretical basis for elucidating the brain-protective mechanisms mediated by exercise and developing intervention strategies for neurological diseases. Thus,real-time analysis of different neural signals during active exercise is needed to study the health effects of exercise throughout the entire life cycle and enhance lifelong sports awareness. Therefore, this article will systematically summarize the innovative technological developments in motor neuroscience research, review the mechanisms of neural plasticity that exercise utilizes to protect the brain, and explore the role of exercise in the prevention and treatment of major neurodegenerative diseases. This aims to provide new ideas for future theoretical innovations and clinical applications in the field of exercise-induced brain protection. 
		                        		
		                        		
		                        		
		                        	
2.Mechanism of Mingshi Prescription in Regulating Opn4-dopamine Axis to Inhibit Endoplasmic Reticulum Stress and Delay Myopia Progression
Baohua LI ; Zefeng KANG ; Lulu WANG ; Xin YAN ; Jianquan WANG ; Xinyue HOU ; Bobiao NING ; Shanshan YE ; Mengyu LIU ; Yipeng SHI ; Danyu LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(18):58-67
		                        		
		                        			
		                        			ObjectiveTo investigate the mechanism by which Mingshi prescription regulates the retinal melanopsin-dopamine (Opn4-DA) axis in myopic mice to inhibit endoplasmic reticulum (ER) stress in the retina and sclera, thereby delaying axial elongation associated with myopia. MethodsSixty 4-week-old male SPF-grade C57BL/6J mice were randomly divided into a normal group, a form-deprived myopia group (FDM group), an intrinsically photosensitive retinal ganglion cells ablation group (ipRGCs group), a Mingshi Prescription group (MSF group, 5.2 g·kg-1), and an ipRGCs + MSF group (5.2 g·kg-1). Except for the normal group, all other groups underwent FDM modeling. Additionally, the ipRGCs and ipRGCs + MSF groups received retinal ipRGC ablation. Three weeks after modeling, the MSF and ipRGCs + MSF groups were administered Mingshi prescription via continuous gavage for six weeks. After refraction and axial length were measured in all mice, eyeballs were collected along with retinal and scleral tissues. Pathological and morphological changes in the retina, choroid, and sclera were observed using periodic acid-Schiff (PAS) staining. Western blot was employed to detect the relative protein expression levels of dopamine D1 receptor (DRD1), C/EBP homologous protein (CHOP), and glucose-regulated protein 78 (GRP78) in the retina, and CHOP and GRP78 in the sclera. Real-time PCR was used to detect the relative mRNA expression of Opn4, CHOP, and GRP78 in the retina, and CHOP and GRP78 in the sclera. Immunofluorescence staining (IF) was performed to detect the expression of Opn4 and DRD1 in retinal tissues. ResultsCompared with the normal group, the FDM group showed a significant myopic shift in refraction (P<0.05) and a significant increase in axial length (P<0.05). The retinal layers were thinner, the number of ganglion cells was reduced, and collagen fibers in the sclera were loosely arranged with evident gaps. Opn4 and DRD1 protein and mRNA expression in the retina were significantly decreased (P<0.05), while CHOP and GRP78 protein and mRNA expression in both retinal and scleral tissues were significantly increased (P<0.05). Compared with the FDM group, the ipRGCs group exhibited further increases in myopic refraction and axial length (P<0.05), more pronounced thinning and looseness in the retinal, choroidal, and scleral layers, lower expression of Opn4 and DRD1 protein and mRNA in the retina (P<0.05), and higher expression of CHOP and GRP78 protein and mRNA in the retina and sclera (P<0.05). Compared with the FDM group, the MSF group showed significantly reduced refractive error and axial length (P<0.05), with improved cellular number, arrangement, and thickness in ocular tissues, increased Opn4 and DRD1 protein and mRNA expression in the retina (P<0.05), and reduced CHOP and GRP78 protein and mRNA expression in both retina and sclera (P<0.05). Similarly, the ipRGCs + MSF group showed significant improvements in terms of the above items compared with the ipRGCs group (P<0.05). ConclusionMingshi Prescription delays myopic axial elongation and refractive progression by regulating the Opn4-DA axis in the retina of myopic mice, thereby inhibiting ER stress in the retina and sclera. This intervention promotes Qi and blood nourishment of the eyes, softens the fascia, and restores ocular rhythm. 
		                        		
		                        		
		                        		
		                        	
3.The Regulatory Mechanisms of Dopamine Homeostasis in Behavioral Functions Under Microgravity
Xin YANG ; Ke LI ; Ran LIU ; Xu-Dong ZHAO ; Hua-Lin WANG ; Lan-Qun MAO ; Li-Juan HOU
Progress in Biochemistry and Biophysics 2025;52(8):2087-2102
		                        		
		                        			
		                        			As China accelerates its efforts in deep space exploration and long-duration space missions, including the operationalization of the Tiangong Space Station and the development of manned lunar missions, safeguarding astronauts’ physiological and cognitive functions under extreme space conditions becomes a pressing scientific imperative. Among the multifactorial stressors of spaceflight, microgravity emerges as a particularly potent disruptor of neurobehavioral homeostasis. Dopamine (DA) plays a central role in regulating behavior under space microgravity by influencing reward processing, motivation, executive function and sensorimotor integration. Changes in gravity disrupt dopaminergic signaling at multiple levels, leading to impairments in motor coordination, cognitive flexibility, and emotional stability. Microgravity exposure induces a cascade of neurobiological changes that challenge dopaminergic stability at multiple levels: from the transcriptional regulation of DA synthesis enzymes and the excitability of DA neurons, to receptor distribution dynamics and the efficiency of downstream signaling pathways. These changes involve downregulation of tyrosine hydroxylase in the substantia nigra, reduced phosphorylation of DA receptors, and alterations in vesicular monoamine transporter expression, all of which compromise synaptic DA availability. Experimental findings from space analog studies and simulated microgravity models suggest that gravitational unloading alters striatal and mesocorticolimbic DA circuitry, resulting in diminished motor coordination, impaired vestibular compensation, and decreased cognitive flexibility. These alterations not only compromise astronauts’ operational performance but also elevate the risk of mood disturbances and motivational deficits during prolonged missions. The review systematically synthesizes current findings across multiple domains: molecular neurobiology, behavioral neuroscience, and gravitational physiology. It highlights that maintaining DA homeostasis is pivotal in preserving neuroplasticity, particularly within brain regions critical to adaptation, such as the basal ganglia, prefrontal cortex, and cerebellum. The paper also discusses the dual-edged nature of DA plasticity: while adaptive remodeling of synapses and receptor sensitivity can serve as compensatory mechanisms under stress, chronic dopaminergic imbalance may lead to maladaptive outcomes, such as cognitive rigidity and motor dysregulation. Furthermore, we propose a conceptual framework that integrates homeostatic neuroregulation with the demands of space environmental adaptation. By drawing from interdisciplinary research, the review underscores the potential of multiple intervention strategies including pharmacological treatment, nutritional support, neural stimulation techniques, and most importantly, structured physical exercise. Recent rodent studies demonstrate that treadmill exercise upregulates DA transporter expression in the dorsal striatum, enhances tyrosine hydroxylase activity, and increases DA release during cognitive tasks, indicating both protective and restorative effects on dopaminergic networks. Thus, exercise is highlighted as a key approach because of its sustained effects on DA production, receptor function, and brain plasticity, making it a strong candidate for developing effective measures to support astronauts in maintaining cognitive and emotional stability during space missions. In conclusion, the paper not only underscores the centrality of DA homeostasis in space neuroscience but also reflects the authors’ broader academic viewpoint: understanding the neurochemical substrates of behavior under microgravity is fundamental to both space health and terrestrial neuroscience. By bridging basic neurobiology with applied space medicine, this work contributes to the emerging field of gravitational neurobiology and provides a foundation for future research into individualized performance optimization in extreme environments. 
		                        		
		                        		
		                        		
		                        	
4.The role of human umbilical cord-derived mesenchymal stem cells transplantation in alleviating radiation-induced ovarian injury
Mei ZHANG ; Chao YANG ; Bo CHENG ; Jianan WANG ; Yinghao MA ; Zheng ZHANG ; Qingxiang HOU ; Li MA
Chinese Journal of Radiological Health 2025;34(4):584-589
		                        		
		                        			
		                        			Objective Using female mice to investigate the reparative effects of human umbilical cord mesenchymal stem cells on radiation-induced ovarian injury. Methods Mice were randomly divided into three groups: a blank control group, a radiation model group, and a cell therapy group. Mice in the radiation model group and the cell therapy group received a single whole-body irradiation of 5 Gy X-rays. Within 2 hours post-irradiation, mice in the cell therapy group underwent ovarian transplantation of UC-MSCs. On days 1, 7, and 14 post-irradiation, body weight was measured, ovarian index was calculated, histopathological changes in ovarian tissue were examined, serum levels of reproductive hormones (follicle-stimulating hormone, anti-Müllerian hormone, and estradiol) were determined, and the colonization of implanted UC-MSCs in the mice was observed. Results On days 1, 7, and 14 post-irradiation, both the cell therapy group and the radiation model group showed decreased body weight compared to the blank control group (P < 0.05). On day 1 post-irradiation compared to day 1 pre-irradiation within the same group, the radiation model group exhibited a greater decrease in body weight than the cell therapy group (P < 0.05). On days 1, 7, and 14 post-irradiation, the ovarian index decreased in both the radiation model group and the cell therapy group compared to the blank control group (P < 0.05). On days 7 and 14 post-irradiation, the ovarian index in the cell therapy group was significantly higher than that in the radiation model group (P < 0.05). Ovarian tissue in the radiation model group exhibited atrophy and a reduction in the number of follicles at all stages. In contrast, follicles in the cell therapy group were large and abundant. On days 1, 7, and 14 post-irradiation, serum follicle-stimulating hormone levels in the cell therapy group were lower than those in the radiation model group, while anti-Müllerian hormone and estradiol levels were higher than those in the radiation model group (P < 0.01). In vivo fluorescence imaging demonstrated that UC-MSCs successfully colonized the ovarian tissue on days 1, 7, and 14 after transplantation. Conclusion UC-MSCs exert a repair effect on radiation-induced ovarian injury in mice.
		                        		
		                        		
		                        		
		                        	
5.Application Analysis of Animal Models of Diarrhea-predominant Irritable Bowel Syndrome Based on Data Mining
Fangli LUO ; Luqiang SUN ; Yujun HOU ; Siqi WANG ; Ying LI ; Siyuan ZHOU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):219-226
		                        		
		                        			
		                        			ObjectiveBased on literature data mining, this study explores the modeling elements of diarrhea-predominant irritable bowel syndrome (IBS-D) animal models in China and abroad, providing references and suggestions for improving modeling methods and evaluation indicators. MethodsRelevant literature on IBS-D animal experiments from 2014 to 2024 was retrieved through computer searches in databases such as China National Knowledge Infrastructure (CNKI), Wanfang Data, VIP, Chinese Medical Journals Full-text Database, and PubMed. Information on experimental animal species, gender, body weight, modeling methods, modeling periods, intervention controls, modeling standards, and detection indicators was organized. Microsoft Excel 2021 software was used to establish a database and perform statistical analysis to examine the characteristics of IBS-D animal models. ResultsA total of 398 articles that met the inclusion criteria were reviewed. The IBS-D animal models were predominantly established using SD rats, Wistar rats, and C57BL/6 mice. Male animals were more commonly used, with rats typically aged 6-8 weeks and mice aged 4-6 weeks. In terms of interventions, piverium bromide was the main Western medicine, Tongxieyaofang was the primary Chinese medicine, and electroacupuncture was the primary acupuncture method. Among the modeling methods, the multi-factor combined composite modeling approach was the most common. Modeling periods were mainly concentrated between 1-14 days and 15-30 days. The success criteria for modeling were mainly evaluated based on the animal's general condition, fecal appearance, visceral sensitivity, gastrointestinal motility, behavior, and pathology. Detection indicators included apparent indexes, pathological markers, biochemical indicators, oxidative stress, brain-gut peptides, neurotransmitters, inflammatory factors, immune function, intestinal permeability, autophagy, apoptosis, proteins related to relevant signaling pathways, intestinal microbiota and its metabolites, etc. ConclusionThere are various methods for establishing IBS-D animal models, but no unified and universally accepted method has been established. The operation of the same modeling methods and the evaluation standards of the models vary across studies. Based on the results of data mining, the authors suggest that the multi-factor combined composite modeling approach most closely reflects the pathophysiological processes of IBS-D, better simulating the complex clinical symptoms of IBS-D patients, such as abdominal pain and diarrhea, and has a high degree of clinical relevance. This method is relatively recommended. While animal models in general align with Western medicine standards, models incorporating traditional Chinese medicine (TCM) syndromes are relatively few. Therefore, one of the future directions for research is to establish IBS-D animal models that meet the combined clinical disease and syndrome requirements of both Western and Chinese medicine. 
		                        		
		                        		
		                        		
		                        	
6.Mechanism of Herbal Cake-separated Moxibustion in Improving Neuroimmune Inflammation in Rats with Chronic Fatigue Syndrome by Interfering TLR4/MyD88/NF-κB Pathway
Chuntao ZHAI ; Yawei HOU ; Linjuan SHI ; Yixiao WANG ; Wei LI ; Yuefeng TIAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):140-149
		                        		
		                        			
		                        			ObjectiveTo explore the mechanism of herbal cake-separated moxibustion using the classical formula Xiaoyaosan in alleviating neuroimmune inflammatory responses in chronic fatigue syndrome (CFS) rats, based on the regulation of the toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear transcription factor-κB (NF-κB) signaling pathway. MethodsFifty SPF-grade SD rats aged 6-8 weeks were randomly divided into five groups: Normal group, model group, sham herbal cake moxibustion group, Chinese medicine intragastric administration group, and herbal cake-separated moxibustion group, with 10 rats in each group. Except for the normal group, all other groups underwent a 21-day modeling process, followed by behavioral testing. The herbal cake-separated moxibustion and sham herbal cake moxibustion groups received interventions at the Shenque (CV8), Guanyuan (CV4), Zusanli (ST36), and Qimen (LR14) acupoints. The Chinese medicine intragastric administration group was treated with a Xiaoyaosan suspension via gavage. Behavioral tests were conducted after 10 days of continuous intervention. Serum levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α), as well as hippocampal levels of IL-1β, IL-6, TNF-α, and NF-κB, were detected by enzyme-linked immunosorbent assay (ELISA). Morphological changes in the hippocampus were observed using hematoxylin-eosin (HE) staining. Real-time quantitative polymerase chain reaction (Real-time PCR) was used to detect mRNA expression levels of TLR4, MyD88, and NF-κB in the hippocampus. Western blot analysis was performed to detect the relative expression levels of TLR4, MyD88, NF-κB, and p65 proteins in the hippocampus. ResultsCompared with the normal group, the model group showed a significant decrease in upright times during the open field test (P<0.01), as well as significant reductions in total movement distance, resting time, and center region duration (P<0.01). In the tail suspension test, immobility time increased (P<0.01), and struggle times decreased (P<0.01). Serum and hippocampal levels of IL-1β, IL-6, and TNF-α, as well as hippocampal NF-κB levels and TLR4, MyD88, and NF-κB mRNA expression, were significantly elevated (P<0.01). After treatment, compared with the model group, the total movement distance and upright times in the open field test were significantly increased in all treatment groups (P<0.01), while resting time and center region duration were notably prolonged (P<0.05, P<0.01). Immobility time in the tail suspension test was significantly shortened (P<0.01), and struggle times significantly increased (P<0.05). Serum and hippocampal levels of IL-1β, IL-6, TNF-α, hippocampal NF-κB levels, and TLR4 and NF-κB mRNA expression were significantly reduced (P<0.05, P<0.01). Compared with the sham herbal cake moxibustion group, the herbal cake-separated moxibustion group showed a significant extension in center region duration during the open field test (P<0.05) and a significant increase in upright times (P<0.01). In the tail suspension test, immobility time was reduced (P<0.01), and struggle times increased (P<0.01). Serum TNF-α levels in the Chinese medicine intragastric administration group were significantly reduced (P<0.01), while serum IL-6 levels, as well as hippocampal levels of IL-1β, TNF-α, NF-κB, and TLR4, MyD88, and NF-κB mRNA expression, were significantly decreased in both the Chinese medicine intragastric administration group and the herbal cake-separated moxibustion group (P<0.05, P<0.01). Compared with the Chinese medicine intragastric administration group, the herbal cake-separated moxibustion group exhibited significantly increased upright times in the open field test (P<0.01). In the tail suspension test, immobility time was reduced (P<0.01), and struggle times increased (P<0.01). Serum IL-1β, hippocampal TNF-α levels, and TLR4, MyD88, and NF-κB mRNA expression were significantly decreased (P<0.05, P<0.01). ConclusionHerbal cake-separated moxibustion effectively improves fatigue and memory function in CFS rats, regulates neuroimmune inflammatory responses, and its mechanism may be related to the modulation of the TLR4/MyD88/NF-κB signaling pathway. 
		                        		
		                        		
		                        		
		                        	
7.Analysis of factors influencing immune checkpoint inhibitor-related thyroid adverse reactions
Jiayu LI ; Qianqian ZHANG ; Meng HOU ; Siqi ZHANG ; Keke WANG
China Pharmacy 2025;36(3):341-345
		                        		
		                        			
		                        			OBJECTIVE To provide reference for rational clinical use of immune checkpoint inhibitor (ICI). METHODS Electronic medical record information of patients who received ICI treatment from January 1st 2020 to December 31st 2023 at a certain hospital was collected. Patients were divided into thyroid immune-related adverse event (irAE) group (subdivided into clinical hypothyroidism, clinical hyperthyroidism, subclinical hypothyroidism, and subclinical hyperthyroidism subgroups) and non- thyroid irAE group based on whether they experienced immune-induced thyroid irAE. Univariate and multivariate Logistic regression analyses were employed to analyze the influencing factors of ICI-related thyroid adverse events. RESULTS A total of 382 patients who received ICI treatment were included, with 137 cases in the thyroid irAE group (accounting for 35.9%) and 245 cases in the non-thyroid irAE group (accounting for 64.1%). Multivariate Logistic regression analysis, following univariate screening, revealed that ICI combined with radiotherapy was positively associated with the occurrence of thyroid irAE [odds ratio (OR)=2.157, 95% confidence interval (CI) (1.144, 4.066), P<0.05], while lung squamous cell carcinoma was negatively associated with the occurrence of thyroid irAE [OR=0.600, 95%CI (0.369, 0.975), P<0.05]. Among various thyroid irAE, nasopharyngeal malignancy was positively associated with the occurrence of immune-related clinical hyperthyroidism [OR=4.678, 95%CI (1.149, 19.042), P<0.05]; ICI combined with radiotherapy [OR=2.622, 95%CI (1.227, 5.603), P<0.05] and lung adenocarcinoma [OR=2.013, 95%CI (1.078, 3.759), P<0.05] were positively associated with the occurrence of immune-related subclinical hyperthyroidism. Age was negatively associated with the occurrence of immune-related clinical hypothyroidism [OR=0.944, 95%CI (0.896, 0.995), P<0.05]; age [OR=0.963, 95%CI (0.932, 0.994), P<0.05] and ICI combined with chemotherapy [OR=0.332, 95%CI (0.137, 0.802), P<0.05] were negatively associated with the occurrence of immune-related subclinical hypothyroidism. CONCLUSIONS Among patients receiving ICI treatment, younger patients are more prone to thyroid irAE. Patients receiving ICI combined with chemotherapy are less likely to experience subclinical hypothyroidism, while ICI combined with radiotherapy significantly increases the risk of thyroid adverse events.
		                        		
		                        		
		                        		
		                        	
8.Decompression mechanism of symmetrically adduction of lumbar decompression induced resorption of herniated nucleus pulpous
Chunlin ZHANG ; Zhaohua HOU ; Xu YAN ; Yan JIANG ; Su FU ; Yongming NING ; Dongzhe LI ; Chao DONG ; Xiaokang LIU ; Yongkui WANG ; Zhengming CAO ; Tengyue YANG
Chinese Journal of Tissue Engineering Research 2025;29(9):1810-1819
		                        		
		                        			
		                        			BACKGROUND:Traditional surgery for lumbar disc herniation involves extensive excision of tissue surrounding the nerve for decompression and removal of protruding lumbar intervertebral discs,which poses various risks and complications such as nerve damage causing paralysis,lumbar instability,herniation recurrence,intervertebral space infection,and adjacent vertebral diseases. OBJECTIVE:To propose the symmetrically adduction of lumbar decompression induced resorption of herniated nucleus pulpous technique for lumbar spine symmetrically decompression,showing the induced resorption of herniated nucleus pulpous phenomenon and early clinical efficacy,and then analyze its decompression mechanism. METHODS:214 patients with lumbar disc herniation at Department of Orthopedics,First Affiliated Hospital of Zhengzhou University from March 2021 to May 2023 were enrolled in this study.Among them,81 patients received conservative treatment as the control group,and 133 patients received symmetrically adduction of lumbar decompression induced resorption of herniated nucleus pulpous treatment as the trial group.Before surgery,immediately after surgery(7-14 days),and early after surgery(over 1 year),MRI images were used to measure the volume changes of lumbar disc herniation.CT images were used to measure the posterior displacement distance of the lumbar spinous process ligament complex,as well as the width and height of the lateral recess.Japanese Orthopaedic Association scores were used to evaluate the patient's neurological function recovery. RESULTS AND CONCLUSION:(1)Control group:81 patients with lumbar disc herniation were treated conservatively,with a total of 171 herniated lumbar discs.The average follow-up time was(22.7±23.1)months.The first and second MRI measurements of 171 herniated lumbar discs showed herniated lumbar disc volumes of(551.6±257.9)mm3 and(792.2±330.4)mm3,respectively,with an average volume increase rate of(53.2±44.4)%,showing statistically significant differences(P<0.001).Out of 171 herniated lumbar discs,4 experienced natural shrinkage,with an absorption ratio of 2.3%(4/171)and an absorption rate of(24.5±9.9)%.(2)Trial group:133 patients with lumbar disc herniation had a total of 285 herniated lumbar discs.(1)Immediately after surgery:All patients were followed up immediately after surgery.229 out of 285 herniated lumbar discs experienced retraction,with an absorption ratio of 80.3%(229/285)and an average absorption rate of(21.5±20.9)%,with significant and complete absorption accounting for 6.5%.There were a total of 70 herniated lumbar discs in the upper lumbar spine,with an absorption ratio of 85.7%(60/70),an average absorption rate of(23.1±19.5)%,and a maximum absorption rate of 86.6%.There were 215 herniated lumbar discs in the lower lumbar spine,with an absorption ratio of 78.6%(169/215),an average absorption rate of(21.0±21.3)%,and a maximum absorption rate of 83.2%.Significant and complete absorption of the upper and lower lumbar vertebrae accounted for 5.7%and 6.5%,respectively,with no statistically significant difference(P>0.05).The average distance of posterior displacement of the spinous process ligament complex immediately after surgery was(5.2±2.8)mm.There were no significant differences in the width and height of the left and right lateral recess before and immediately after surgery(P>0.05).The Japanese Orthopaedic Association score immediately after surgery increased from(10.1±3.4)before surgery to(17.0±4.8),and the immediate effective rate after surgery reached 95.6%.(2)Early postoperative period:Among them,46 patients completed the early postoperative follow-up.There were 101 herniated lumbar discs,with an absorption ratio of 94%(95/101)and an average absorption rate of(36.9±23.7)%.Significant and complete absorption accounted for 30.6%,with a maximum absorption rate of 100%.Out of 101 herniated lumbar discs,3 remained unchanged in volume,with a volume invariance rate of 2.97%(3/101).Out of 101 herniated lumbar discs,3 had an increased volume of herniated lumbar discs,with an increase ratio of 2.97%(3/101)and an increase rate of(18.5±18.4)%.The Japanese Orthopaedic Association score increased from preoperative(9.3±5.1)to(23.5±4.0),with an excellent and good rate of 93.4%.(3)The early postoperative lumbar disc herniation absorption ratios of the control group and trial group were 2.3%and 85.9%,respectively,with statistically significant differences(P<0.001).(4)Complications:There were two cases of incision exudation and delayed healing in the trial group.After conservative treatment such as dressing change,no nerve injury or death occurred in the incision healing,and no cases underwent a second surgery.(5)It is concluded that symmetrically adduction of lumbar decompression induced resorption of herniated nucleus pulpous is a new method for treating lumbar disc herniation that can avoid extensive excision of the"ring"nerve and achieve satisfactory early clinical efficacy.It does not damage the lumbar facet joints or alter the basic anatomical structure of the lateral recess,fully preserves the herniated lumbar discs,and can induce significant or even complete induced resorption of herniated nucleus pulpous.Symmetrically adduction of lumbar decompression induced resorption of herniated nucleus pulpous provides a new basis and method for the clinical treatment of lumbar disc herniation.
		                        		
		                        		
		                        		
		                        	
9.Establishment and evaluation of pendulum-like modified rat abdominal heart heterotopic transplantation model
Hongtao TANG ; Caihan LI ; Xiangyun ZHENG ; Senlin HOU ; Weiyang CHEN ; Zengwei YU ; Yabo WANG ; Dong TIAN ; Qi AN
Organ Transplantation 2025;16(2):280-287
		                        		
		                        			
		                        			Objective To introduce the modeling method of pendulum-like modified rat abdominal heart heterotopic transplantation model and evaluate the quality of the model. Methods An operator without transplantation experience performed 15 consecutive models, recorded the time of each step, changes in body weight and modified Stanford scores, and calculated the surgical success rate, postoperative 1-week survival rate and technical success rate. Ultrasound examinations was performed in 1 week postoperatively. Results The times for donor heart acquisition, donor heart processing, recipient preparation and transplantation anastomosis were (14.3±1.4) min, (3.5±0.6) min, (13.6±2.1) min and (38.3±5.2) min respectively. The surgical success rate was 87% (13/15), and the survival rate 1 week after operative was 100% (13/13). The improved Stanford score indicated a technical success rate of 92% (12/13), and the postoperative 1-week ultrasound examination showed that grafts with Stanford scores ≥3 had detectable pulsation and blood flow signals. Conclusions The pendulum-like modified rat abdominal heart heterotopic transplantation improved model further optimizes the operational steps with a high success rate and stable quality, may be chosen as a modeling option for basic research in heart transplantation in the future.
		                        		
		                        		
		                        		
		                        	
10.Influencing factors of school sports environment on physical activity levels among middle school students
XIE Dan, HOU Xiao, WANG Yunliang, CHEN Weijie, WANG Ying, JI Zhe, LI Hongjuan
Chinese Journal of School Health 2025;46(5):685-689
		                        		
		                        			Objective:
		                        			To explore the relationship between school sports environment and physical activity levels of middle school students, so as to provide theoretical and empirical support for optimizing school sports environment and enhance adolescent physical activity.
		                        		
		                        			Methods:
		                        			Using multi-stage random cluster sampling, from September to December 2023, 1 329 junior and senior high school students from Xuancheng City of Anhui Province, Lianyungang City of Jiangsu Province, Wuhan City of Hubei Province, Qiqihar City and Suihua City of Heilongjiang Province, and Shenzhen City of Guangdong Province were selected. The International Physical Activity Questionnaire-Short Form (IPAQ-SF) assessed students  physical activity levels, and the questionnaire on the characteristics of school sports environment was developed to evaluate the factors of school sports environment. Multivariate ordered Logistic regression was performed to analyze the correlation between school sports environment factors and physical activity levels, and the analytic hierarchy process determined the weight of key influencing factors.
		                        		
		                        			Results:
		                        			The results showed that weekly vigorous physical activity time was [60 (25, 90)] minutes, moderate physical activity time was [60 (30, 90)] minutes, light physical activity time was [105 (40, 200)] minutes, and sedentary behavior time was [ 3 300  (2 100, 4 500)] minutes, only 10.53% of the students met World Health Organization physical activity recommendations, and 89.69% of the students averaged >8 h daily sedentary time. Multivariate ordered Logistic regression showed that adequate sports equipment significantly promoted physical activity across all intensities and reduced sedentary time ( OR = 4.97, 11.54, 4.03, 0.11); diverse sports activities improved vigorous and moderate physical activity while reducing sedentary time ( OR =4.20, 14.06, 0.17); and peer encouragement was associated with increased low-intensity physical activities and decreased sedentary time ( OR =10.40, 0.15)( P <0.05). The analytic hierarchy process weighting analysis identified the top three influential factors related to physical activity among middle school students: sufficient sports equipment, varied physical education activities, frequent peer encouragement, the influence weight accounts for  23.55% , 14.18% and 11.77% of the total, respectively.
		                        		
		                        			Conclusion
		                        			Key school sports environmental factors for adolescent physical activity level include ensuring adequate sports equipment and class availability, diversifying activity content, fostering peer support, and cultivating an active sports culture and a comprehensive approach encourage students  participation in extracurricular physical activities.
		                        		
		                        		
		                        		
		                        	
            

Result Analysis
Print
Save
E-mail