1.Of genes and microbes: solving the intricacies in host genomes.
Jun WANG ; Liang CHEN ; Na ZHAO ; Xizhan XU ; Yakun XU ; Baoli ZHU
Protein & Cell 2018;9(5):446-461
Microbiome research is a quickly developing field in biomedical research, and we have witnessed its potential in understanding the physiology, metabolism and immunology, its critical role in understanding the health and disease of the host, and its vast capacity in disease prediction, intervention and treatment. However, many of the fundamental questions still need to be addressed, including the shaping forces of microbial diversity between individuals and across time. Microbiome research falls into the classical nature vs. nurture scenario, such that host genetics shape part of the microbiome, while environmental influences change the original course of microbiome development. In this review, we focus on the nature, i.e., the genetic part of the equation, and summarize the recent efforts in understanding which parts of the genome, especially the human and mouse genome, play important roles in determining the composition and functions of microbial communities, primarily in the gut but also on the skin. We aim to present an overview of different approaches in studying the intricate relationships between host genetic variations and microbes, its underlying philosophy and methodology, and we aim to highlight a few key discoveries along this exploration, as well as current pitfalls. More evidence and results will surely appear in upcoming studies, and the accumulating knowledge will lead to a deeper understanding of what we could finally term a "hologenome", that is, the organized, closely interacting genome of the host and the microbiome.
Animals
;
Biomedical Research
;
Genes
;
Genetic Variation
;
Genome
;
Host-Pathogen Interactions
;
genetics
;
Humans
;
Metagenomics
;
Microbiota
2.Nucleocapsid protein from porcine epidemic diarrhea virus isolates can antagonize interferon-λ production by blocking the nuclear factor-κB nuclear translocation.
Ying SHAN ; Zi-Qi LIU ; Guo-Wei LI ; Cong CHEN ; Hao LUO ; Ya-Jie LIU ; Xun-Hui ZHUO ; Xing-Fen SHI ; Wei-Huan FANG ; Xiao-Liang LI
Journal of Zhejiang University. Science. B 2018;19(7):570-580
Porcine epidemic diarrhea virus (PEDV) is a highly infectious pathogen that can cause severe diseases in pigs and result in enormous economic losses in the worldwide swine industry. Previous studies revealed that PEDV exhibits an obvious capacity for modulating interferon (IFN) signaling or expression. The newly discovered type III IFN, which plays a crucial role in antiviral immunity, has strong antiviral activity against PEDV proliferation in IPEC-J2 cells. In this study, we aimed to investigate the effect of PEDV nucleocapsid (N) protein on type III IFN-λ. We found that the N proteins of ten PEDV strains isolated between 2013 and 2017 from different local farms shared high nucleotide identities, while the N protein of the CV777 vaccine strain formed a monophyletic branch in the phylogenetic tree. The N protein of the epidemic strain could antagonize type III IFN, but not type I or type II IFN expression induced by polyinosinic-polycytidylic acid (poly(I:C)) in IPEC-J2 cells. Subsequently, we demonstrated that the inhibition of poly(I:C)-induced IFN-λ3 production by PEDV N protein was dependent on the blocking of nuclear factor-κB (NF-κB) nuclear translocation. These findings might help increase understanding of the pathogenesis of PEDV and its mechanisms for evading the host immune response.
Active Transport, Cell Nucleus
;
Animals
;
Coronavirus Infections
;
immunology
;
veterinary
;
virology
;
Genes, Viral
;
Host-Pathogen Interactions
;
immunology
;
Interferons
;
antagonists & inhibitors
;
biosynthesis
;
genetics
;
Interleukins
;
antagonists & inhibitors
;
biosynthesis
;
genetics
;
NF-kappa B
;
metabolism
;
Nucleocapsid Proteins
;
genetics
;
immunology
;
physiology
;
Porcine epidemic diarrhea virus
;
genetics
;
pathogenicity
;
physiology
;
Promoter Regions, Genetic
;
Swine
;
Swine Diseases
;
immunology
;
virology
3.PlaD: A Transcriptomics Database for Plant Defense Responses to Pathogens, Providing New Insights into Plant Immune System.
Huan QI ; Zhenhong JIANG ; Kang ZHANG ; Shiping YANG ; Fei HE ; Ziding ZHANG
Genomics, Proteomics & Bioinformatics 2018;16(4):283-293
High-throughput transcriptomics technologies have been widely used to study plant transcriptional reprogramming during the process of plant defense responses, and a large quantity of gene expression data have been accumulated in public repositories. However, utilization of these data is often hampered by the lack of standard metadata annotation. In this study, we curated 2444 public pathogenesis-related gene expression samples from the model plant Arabidopsis and three major crops (maize, rice, and wheat). We organized the data into a user-friendly database termed as PlaD. Currently, PlaD contains three key features. First, it provides large-scale curated data related to plant defense responses, including gene expression and gene functional annotation data. Second, it provides the visualization of condition-specific expression profiles. Third, it allows users to search co-regulated genes under the infections of various pathogens. Using PlaD, we conducted a large-scale transcriptome analysis to explore the global landscape of gene expression in the curated data. We found that only a small fraction of genes were differentially expressed under multiple conditions, which might be explained by their tendency of having more network connections and shorter network distances in gene networks. Collectively, we hope that PlaD can serve as an important and comprehensive knowledgebase to the community of plant sciences, providing insightful clues to better understand the molecular mechanisms underlying plant immune responses. PlaD is freely available at http://systbio.cau.edu.cn/plad/index.php or http://zzdlab.com/plad/index.php.
Arabidopsis
;
genetics
;
Databases, Genetic
;
Gene Expression Profiling
;
Gene Expression Regulation, Plant
;
Gene Regulatory Networks
;
Genes, Plant
;
Host-Pathogen Interactions
;
genetics
;
Oryza
;
genetics
;
Plant Immunity
;
genetics
;
Plants
;
genetics
;
microbiology
;
Transcriptome
;
genetics
;
Triticum
;
genetics
;
User-Computer Interface
;
Zea mays
;
genetics
4.Influence of 120 kDa Pyruvate:Ferredoxin Oxidoreductase on Pathogenicity of Trichomonas vaginalis.
The Korean Journal of Parasitology 2016;54(1):71-74
Trichomonas vaginalis is a flagellate protozoan parasite and commonly infected the lower genital tract in women and men. Iron is a known nutrient for growth of various pathogens, and also reported to be involved in establishment of trichomoniasis. However, the exact mechanism was not clarified. In this study, the author investigated whether the 120 kDa protein of T. vaginalis may be involved in pathogenicity of trichomonads. Antibodies against 120 kDa protein of T. vaginalis, which was identified as pyruvate:ferredoxin oxidoreductase (PFOR) by peptide analysis of MALDI-TOF-MS, were prepared in rabbits. Pretreatment of T. vaginalis with anti-120 kDa Ab decreased the proliferation and adherence to vaginal epithelial cells (MS74) of T. vaginalis. Subcutaneous tissue abscess in anti-120 kDa Ab-treated T. vaginalis-injected mice was smaller in size than that of untreated T. vaginalis-infected mice. Collectively, the 120 kDa protein expressed by iron may be involved in proliferation, adhesion to host cells, and abscess formation, thereby may influence on the pathogenicity of T. vaginalis.
Animals
;
Antibodies/metabolism
;
Cell Proliferation/drug effects
;
Epithelial Cells/parasitology
;
Host-Pathogen Interactions/drug effects/*physiology
;
Iron/pharmacology
;
Mice
;
Pyruvate Synthase/*metabolism
;
Rabbits
;
Trace Elements/pharmacology
;
Trichomonas Infections/*parasitology
;
Trichomonas vaginalis/drug effects/genetics/metabolism/*pathogenicity
5.Opacity proteins of neisseria gonorrhoeae in lipooligosaccharide mutants lost ability to interact with neutrophil-restricted CEACAM3 (CD66d).
Song ZHANG ; Ya-Ting TU ; Hua-Hua CAI ; Hong-Hui DING ; Qiao LI ; Ying-Xia HE ; Xin-Xin LIU ; Xin WANG ; Feng HU ; Tie CHEN ; Hong-Xiang CHEN
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(3):344-349
Lipooligosacharide (LOS) of Neisseria gonorrhoeae (gonococci, GC) is involved in the interaction of GC with host cells. Deletion of the alpha-oligosaccharide (alpha-OS) moiety of LOS (lgtF mutant) significantly impairs invasion of GC into epithelial cell lines. GC opacity (Opa) proteins, such as OpaI, mediate phagocytosis and stimulate chemiluminescence responses in neutrophils in part through interaction with members of the carcinoembryonic antigen (CEA) family, which includes CEACAM3 (CD66d), a human neutrophil specific receptor for phagocytosis of bacteria. In the present work, we examined the effects of OpaI-expressing lgtF mutant on phagocytosis by HeLa-CEACAM3 cells and chemiluminescence responses in neutrophils. The results showed that lgtF mutant even expressing OpaI completely lost the ability to promote either phagocytosis mediated by CEACAM3 interaction in HeLa cells or chemiluminescence responses in neutrophils. These data indicated that Opa proteins in the lgtF mutant, which might result from the conformational change, cannot be functional.
Antigens, Bacterial
;
chemistry
;
genetics
;
immunology
;
metabolism
;
Carbohydrate Sequence
;
Carcinoembryonic Antigen
;
genetics
;
immunology
;
Gene Expression Regulation
;
HeLa Cells
;
Host-Pathogen Interactions
;
Humans
;
Lipopolysaccharides
;
chemistry
;
immunology
;
Luminescent Measurements
;
Mutation
;
Neisseria gonorrhoeae
;
genetics
;
metabolism
;
pathogenicity
;
Neutrophils
;
immunology
;
microbiology
;
Phagocytosis
6.Inhibition of HBV Release by BST-2.
Zhu HAN ; Xiaofang YU ; Wenyan ZHANG
Chinese Journal of Virology 2016;32(2):215-221
Bone marrow stromal antigen 2 (BST-2) is a kind of host restriction factor. Since it was discovered to be responsible for the defect in virion release of HIV-1 mutants lacking the accessory gene vpu in 2008, it was thought to mainly restrict the viruses by directly tethering viral particles at the plasma membrane. Recent reports suggest that BST-2 also can inhibit the the release of HBV particles, which are budding in the intracellular vesicles, expanding the antiviral spectrum of BST-2. Futhermore, the machanism that BST-2 used to restrict HBV release in multivesicular bodies (MVBs) is similar to that used to restrict HIV at the plasma membrane. However, HBV have evolved strategies to antagonize the antiviral action of BST-2. There are two different opinions about the antagonist. One is HBV inactivated BST-2 by HBx requiring a hepatocyte-specific environment. Another thought envelope protein HBs counteract the antiviral action of BST-2. In this review, we focus on the current advances in the anti-HBV activity of BST-2.
Animals
;
Antigens, CD
;
genetics
;
immunology
;
GPI-Linked Proteins
;
genetics
;
immunology
;
Hepatitis B
;
genetics
;
immunology
;
virology
;
Hepatitis B virus
;
genetics
;
physiology
;
Host-Pathogen Interactions
;
Humans
;
Virus Release
7.DNA sensor cGAS-mediated immune recognition.
Pengyan XIA ; Shuo WANG ; Pu GAO ; Guangxia GAO ; Zusen FAN
Protein & Cell 2016;7(11):777-791
The host takes use of pattern recognition receptors (PRRs) to defend against pathogen invasion or cellular damage. Among microorganism-associated molecular patterns detected by host PRRs, nucleic acids derived from bacteria or viruses are tightly supervised, providing a fundamental mechanism of host defense. Pathogenic DNAs are supposed to be detected by DNA sensors that induce the activation of NFκB or TBK1-IRF3 pathway. DNA sensor cGAS is widely expressed in innate immune cells and is a key sensor of invading DNAs in several cell types. cGAS binds to DNA, followed by a conformational change that allows the synthesis of cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) from adenosine triphosphate and guanosine triphosphate. cGAMP is a strong activator of STING that can activate IRF3 and subsequent type I interferon production. Here we describe recent progresses in DNA sensors especially cGAS in the innate immune responses against pathogenic DNAs.
DNA, Bacterial
;
immunology
;
metabolism
;
DNA, Viral
;
immunology
;
metabolism
;
Gene Expression Regulation
;
Host-Pathogen Interactions
;
Humans
;
Immunity, Innate
;
Interferon Regulatory Factor-3
;
genetics
;
immunology
;
Interferon Type I
;
biosynthesis
;
immunology
;
Membrane Proteins
;
genetics
;
immunology
;
Models, Molecular
;
NF-kappa B
;
genetics
;
immunology
;
Nucleotides, Cyclic
;
biosynthesis
;
immunology
;
Nucleotidyltransferases
;
genetics
;
immunology
;
Protein Binding
;
Protein-Serine-Threonine Kinases
;
genetics
;
immunology
;
Signal Transduction
8.Genomic assays for Epstein-Barr virus-positive gastric adenocarcinoma.
Experimental & Molecular Medicine 2015;47(1):e134-
A small set of gastric adenocarcinomas (9%) harbor Epstein-Barr virus (EBV) DNA within malignant cells, and the virus is not an innocent bystander but rather is intimately linked to pathogenesis and tumor maintenance. Evidence comes from unique genomic features of host DNA, mRNA, microRNA and CpG methylation profiles as revealed by recent comprehensive genomic analysis by The Cancer Genome Atlas Network. Their data show that gastric cancer is not one disease but rather comprises four major classes: EBV-positive, microsatellite instability (MSI), genomically stable and chromosome instability. The EBV-positive class has even more marked CpG methylation than does the MSI class, and viral cancers have a unique pattern of methylation linked to the downregulation of CDKN2A (p16) but not MLH1. EBV-positive cancers often have mutated PIK3CA and ARID1A and an amplified 9p24.1 locus linked to overexpression of JAK2, CD274 (PD-L1) and PDCD1LG2 (PD-L2). Multiple noncoding viral RNAs are highly expressed. Patients who fail standard therapy may qualify for enrollment in clinical trials targeting cancer-related human gene pathways or promoting destruction of infected cells through lytic induction of EBV genes. Genomic tests such as the GastroGenus Gastric Cancer Classifier are available to identify actionable variants in formalin-fixed cancer tissue of affected patients.
Adenocarcinoma/*diagnosis/*etiology/therapy
;
DNA Methylation
;
Epstein-Barr Virus Infections/*complications
;
Gene Expression Profiling
;
Gene Expression Regulation, Neoplastic
;
Gene Expression Regulation, Viral
;
*Genomics/methods
;
Herpesvirus 4, Human/*physiology
;
Host-Pathogen Interactions/genetics
;
Humans
;
MicroRNAs/genetics
;
Mutation
;
RNA, Messenger/genetics
;
Signal Transduction
;
Stomach Neoplasms/*diagnosis/*etiology/therapy
;
Virus Integration
9.Molecular Mechanism of Action of hnRNP K and RTN3 in the Replication of Enterovirus 71.
Li LI ; Haiyan ZHONG ; Mao FAN ; Liyue KUI ; Huiying LI ; Jianying ZHANG
Chinese Journal of Virology 2015;31(2):197-200
Enterovirus 71 (EV71) is a neurotropic pathogen that can induce hand, foot and mouth disease in children. There is an appreciable mortality rate after EV71 infections. The mechanism of action of EV71 replication is not known. Recent work has identified some of cell factors of the host that participate in the synthesis of the RNA and proteins of EV71 (e.g., hnRNP K, reticulon 3 (RTN 3)). In that work, researchers used a competitive assay to show that hnRNP K can interact with EV71 5' UTR, which is required for efficient synthesis of viral RNA. Using a yeast two-hybrid system, other researchers demonstrated that RTN 3 interacts with the N-terminal domain of EV71 2C, which is crucial for replication of viral RNA. Here, we discuss recent work focusing on the molecular mechanisms of hnRNP K and RTN 3 in the synthesis of the RNA and proteins of EV71.
Animals
;
Carrier Proteins
;
genetics
;
metabolism
;
Enterovirus A, Human
;
genetics
;
physiology
;
Enterovirus Infections
;
genetics
;
metabolism
;
virology
;
Heterogeneous-Nuclear Ribonucleoprotein K
;
Host-Pathogen Interactions
;
Humans
;
Membrane Proteins
;
genetics
;
metabolism
;
Nerve Tissue Proteins
;
genetics
;
metabolism
;
Ribonucleoproteins
;
genetics
;
metabolism
;
Viral Proteins
;
genetics
;
metabolism
;
Virus Replication
10.Progress in studies of viperin, an important cellular antiviral factor.
Chunhui ZHU ; Yandong TANG ; Fang XU ; Jianhua ZHOU
Chinese Journal of Virology 2015;31(1):91-96
Viperin is an endoplasmic reticulum (ER)-associated protein that has been identified as an innate antiviral protein. Viperin expression can be largely upregulated by viruses, interferons, and oligonucleotides such as poly I:C and lipopolysaccharides. Viperin inhibits viral replication by interactiing with host cell proteins and several viral proteins, and disrupting the cell membrane system. It shows a broad-spectrum of antiviral activity. Some viruses have developed activities that counteract the action of viperin during a long- term period of evolution with hosts by impairing viperin expression. In addition to its antiviral effects, viperin has several other biological functions. This article review the basic characteristics of viperin and the state of current research into its antiviral effects, demonstrating the rapid progress that has been made in this field.
Animals
;
Host-Pathogen Interactions
;
Humans
;
Proteins
;
genetics
;
immunology
;
Virus Diseases
;
genetics
;
immunology
;
virology
;
Virus Replication
;
Viruses
;
genetics
;
immunology

Result Analysis
Print
Save
E-mail