1.Effect of Angiopep-2-functionalized bacterial extracellular vesicles system on glioblastoma
Bo SUN ; Zongqiang LYU ; Ning LUO ; Rong LI ; Hongxiang WANG ; Juxiang CHEN
Journal of Pharmaceutical Practice and Service 2025;43(10):481-490
Objective To construct a targeted drug delivery system, Ang-BEVs@Dox, based on Angiopep-2 peptide-modified bacterial extracellular vesicles (BEVs) loaded with doxorubicin (Dox), overcome the challenges of blood-brain barrier (BBB) penetration and systemic toxicity in chemotherapy for glioblastoma (GBM), enhance drug targeting to brain tumors and reduce its toxic side effects. Methods BEVs derived from Escherichia coli were isolated using ultracentrifugation. The targeting ligand Angiopep-2, specific for the LRP-1 receptor, was conjugated onto the surface of BEVs to construct the targeted carrier (Ang-BEVs). Dox was loaded into Ang-BEVs using low-frequency sonication to form Ang-BEVs@Dox. The physicochemical properties (morphology and size) of the carriers were characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS). The BBB-penetrating capability, in vitro/in vivo anti-tumor efficacy, and biosafety of the system were evaluated using cellular uptake assays, 3D tumor spheroid models, and orthotopic tumor-bearing mouse models. Results ① Carrier characterization and in vitro efficacy: Ang-BEVs@Dox exhibited a particle size of approximately 100 nm and maintained structural stability after Dox loading. It significantly enhanced cellular uptake efficiency in U87MG cells and achieved deep penetration within 3D tumor spheroids. Cytotoxicity assays demonstrated synergistic anti-tumor effects between the BEVs and Dox in the Ang-BEVs@Dox system. ② In vivo targeting and anti-tumor efficacy: In orthotopic tumor-bearing mouse models, Ang-BEVs@Dox effectively penetrated the BBB and significantly inhibited tumor growth, extending the median survival time of tumor-bearing mice to 33.5 days (compared to 23.5 days in the blank control group, P<0.001). Immunohistochemical analysis revealed significant suppression of the tumor cell proliferation marker Ki-67 and enhancement of the apoptosis marker TUNEL staining signals. ③ Biosafety: Major organs from mice in the Ang-BEVs@Dox treatment group showed no observable pathological damage, indicating good biosafety. Conclusion This study successfully constructed an Angiopep-2 peptide-modified engineered BEVs delivery system (Ang-BEVs@Dox). Through Angiopep-2-mediated BBB penetration and tumor targeting, it significantly enhanced the accumulation and therapeutic efficacy of BEVs at the GBM site. This method combined efficient delivery, low systemic toxicity, and clinical translation potential, which provided an innovative solution to overcome the therapeutic bottleneck in GBM treatment.
2.The joint analysis of heart health and mental health based on continual learning.
Hongxiang GAO ; Zhipeng CAI ; Jianqing LI ; Chengyu LIU
Journal of Biomedical Engineering 2025;42(1):1-8
Cardiovascular diseases and psychological disorders represent two major threats to human physical and mental health. Research on electrocardiogram (ECG) signals offers valuable opportunities to address these issues. However, existing methods are constrained by limitations in understanding ECG features and transferring knowledge across tasks. To address these challenges, this study developed a multi-resolution feature encoding network based on residual networks, which effectively extracted local morphological features and global rhythm features of ECG signals, thereby enhancing feature representation. Furthermore, a model compression-based continual learning method was proposed, enabling the structured transfer of knowledge from simpler tasks to more complex ones, resulting in improved performance in downstream tasks. The multi-resolution learning model demonstrated superior or comparable performance to state-of-the-art algorithms across five datasets, including tasks such as ECG QRS complex detection, arrhythmia classification, and emotion classification. The continual learning method achieved significant improvements over conventional training approaches in cross-domain, cross-task, and incremental data scenarios. These results highlight the potential of the proposed method for effective cross-task knowledge transfer in ECG analysis and offer a new perspective for multi-task learning using ECG signals.
Humans
;
Electrocardiography/methods*
;
Mental Health
;
Algorithms
;
Signal Processing, Computer-Assisted
;
Machine Learning
;
Arrhythmias, Cardiac/diagnosis*
;
Cardiovascular Diseases
;
Neural Networks, Computer
;
Mental Disorders
3.A Comparative Analysis of Subtyping Methodologies on Cross-sectional sMRI Data.
Shirui ZHANG ; Baitong ZHANG ; Kun ZHAO ; Zhuangzhuang LI ; Pan WANG ; Dawei WANG ; Chengyuan SONG ; Jie LU ; Zengqiang ZHANG ; Hongxiang YAO ; Tong HAN ; Chunshui YU ; Bo ZHOU ; Ying HAN ; Xi ZHANG ; Pindong CHEN ; Yong LIU
Neuroscience Bulletin 2025;41(9):1689-1695
4.ALKBH5 exacerbates psoriatic dermatitis in mice by promoting angiogenesis.
Chengfang ZHANG ; Fei LI ; Bao CHAI ; Jian JIANG ; Yinlian ZHANG ; Xuemei LI ; Jingyu ZHANG ; Yuqiong HUANG ; Zilin JIN ; Yixuan Wang WAN ; Suwen LIU ; Nan YU ; Hongxiang CHEN
Frontiers of Medicine 2025;19(4):653-664
Psoriasis is a chronic inflammatory skin disease, and its pathogenesis is largely modulated by abnormal angiogenesis. Previous research has indicated that AlkB homolog 5 (ALKBH5), an important demethylase affecting N6-methyladenosine (m6A) modification, plays a role in regulating angiogenesis in cardiovascular and eye diseases. Our present study found that ALKBH5 was upregulated and co-localized with cluster of differentiation 31 (CD31) in the skin of IMQ group compared with control group. ALKBH5-deficient mice decreased IMQ-induced psoriatic dermatitis and exhibited histological improvements, including decreased epidermal thickness, hyperkeratosis, numbers of dermal capillary vessels and inflammatory cell infiltration. ALKBH5-KO mice alleviated angiogenesis in psoriatic lesions by downregulating the protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway. Additionally, the expression of ALKBH5 was significantly upregulated in IL-17A-induced human umbilical vein endothelial cells (HUVECs), which further promoted the expression of angiogenesis-related cytokines and endothelial cell proliferation. Cell proliferation and angiogenesis were suppressed in ALKBH5 knockdown group, whereas ALKBH5 overexpression promoted these processes. The regulation of angiogenesis in HUVECs by ALKBH5 was facilitated through the AKT-mTOR pathway. Collectively, ALKBH5 plays a pivotal role in psoriatic dermatitis and angiogenesis, which may offer a new potential targets for treating psoriasis.
Animals
;
Psoriasis/chemically induced*
;
Mice
;
Humans
;
Neovascularization, Pathologic/genetics*
;
Human Umbilical Vein Endothelial Cells/metabolism*
;
AlkB Homolog 5, RNA Demethylase/genetics*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
Cell Proliferation
;
Mice, Knockout
;
Disease Models, Animal
;
Signal Transduction
;
Male
;
Skin/blood supply*
;
Mice, Inbred C57BL
;
Angiogenesis
5.Total alkaloids from Thesium chinense inhibit lipopolysaccharide-induced respiratory inflammation by modulating Nrf2/NF-κB/NLRP3 signaling pathway.
Guohui LI ; Yueqin GUAN ; Lintao XU ; Guangcheng PENG ; Qingtong HAN ; Tian WANG ; Zhenpeng XU ; Xuesen WEN ; Hongxiang LOU ; Tao SHEN
Chinese Journal of Natural Medicines (English Ed.) 2025;23(4):421-430
Inflammation plays a pivotal role in the etiology and progression of various diseases. In traditional Chinese medicine, the whole plants of Thesium chinense Turcz. and its preparations (e.g. Bairui Granules) have been employed to manage inflammatory conditions. While flavonoids were previously considered the primary anti-inflammatory components, other potentially active constituents have been largely overlooked and not thoroughly investigated. This study presents a novel finding that the total alkaloids of T. chinense (BC-Alk) are potent active substances underlying the traditional and clinical applications of T. chinense and Bairui Granules as anti-inflammatory agents. UPLC-MS/MS analysis identified the composition of BC-Alk as quinolizidine alkaloids. The anti-inflammatory efficacy of BC-Alk was evaluated using a lipopolysaccharide (LPS)-induced lung inflammation model in mice. Results demonstrated that BC-Alk significantly mitigated LPS-induced lung inflammation, attenuated the overproduction of IL-1β and the overproduction of inflammatory factors (TNF-α), and ameliorated lung tissue hyperplasia in mice in vivo. Mechanistic studies in vitro revealed that BC-Alk upregulated the expression of Nrf2 and its downstream proteins NQO1 and glutamate-cystine ligase and modifier subunit (GCLM), inhibited NF-κB phosphorylation, and suppressed NLRP3 activation. Collectively, these findings indicate that BC-Alk exerts potent inhibitory effects against lung inflammation by modulating Nrf2, NF-κB, and NLRP3 pathways. This study provides new insights into the anti-inflammatory constituents of T. chinense and Bairui Granules.
Animals
;
Lipopolysaccharides/adverse effects*
;
Alkaloids/pharmacology*
;
NF-kappa B/metabolism*
;
NF-E2-Related Factor 2/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Mice
;
Signal Transduction/drug effects*
;
Anti-Inflammatory Agents/pharmacology*
;
Male
;
Mice, Inbred C57BL
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
;
Pneumonia/genetics*
6.Optimizing arch expansion with clear aligners in the mixed dentition based on finite element analysis
Qinyi LÜ ; Ziqi GAO ; Qingchen FENG ; Hongxiang MEI ; Juan LI
Journal of Shanghai Jiaotong University(Medical Science) 2024;44(8):935-943
Objective·To reveal the direction,efficiency,and mechanical load of single tooth displacement with clear aligners for expansion treatment during the transitional dentition period with the aid of finite element analysis.Additionally,overcorrection and torque compensation systems were designed to address insufficient expansion efficiency and buccal inclination of posterior teeth.Methods·One volunteer in mixed dentition period was included to construct a three dimentional cranio-maxillary complex model and an invisible orthodontic system,simulating the buccal displacement(load 1?4:0.200,0.275,0.300,0.325 mm,respectively)and root buccal torque(load 1:buccal displacement load 0.200 mm,root buccal torque 0°;load 5:buccal displacement load 0.275 mm,root buccal torque 1.0°;load 6:buccal displacement load 0.300 mm,root buccal torque 1.3° and load 7:buccal displacement load 0.325mm,root buccal torque 1.8°)on the maxillary deciduous teeth to the first permanent molar with a non bracket invisible orthodontic appliance.Through finite element analysis,the tooth displacement and equivalent stress distribution of the periodontal membrane can be calculated.Results·Expansion treatment with clear aligners in the transitional dentition phase primarily revealed the effect of buccal expansion of teeth;different teeth achieved different levels of expansion rate.At a set expansion amount of 0.200 mm per side,expansion efficiency in the maxillary first permanent molar was 51.86%,second primary molar 68.76%,first primary molar 73.48%,and primary cuspid 84.17%.By designing over-correction(0.275,0.300,0.325 mm),the results showed significant enhancement in expansion effect.When overcorrection length reached 150%(0.300 mm),expansion efficiency at the maxillary first permanent molar,second primary molar,first primary molar,and primary cuspid were 75.16%,99.96%,107.35%,and 122.37%,respectively.The expansion efficiency of maxillary second primary molar,first primary molar,and primary cuspid was close to 100.00%.The overcorrection design exacerbated the dental effects of expansion,intensifying the tendency for teeth to tilt toward the cheek side,leading to side effects such as buccal inclination and drooping of the palatal cusps.When the overcorrection amount for expansion reached 150%,the crown-root displacement in the upper first permanent molar,second primary molar,first primary molar,and primary cuspid were-0.109,-0.134,-0.132,and-0.298 mm,respectively.Applying specific torque compensation for different tooth positions can combat the buccal inclination of posterior teeth.At an overcorrection length of 150%(0.300 mm)with an added 1.3° root buccal torque,expansion efficiency was 56.15%,73.88%,79.49%,and 87.80%,respectively.While the crown-root displacement differences reduced to-0.081,-0.097,-0.095,and-0.208 mm.Conclusion·When using clear aligners for expansion treatment during a transitional dentition period,side effects such as buccal inclination of posterior teeth exist.Furthermore,various teeth realize differing levels of expansion efficiency,necessitating the design of unique adjustment strategies according to different tooth positions.Overcorrection can improve expansion efficiency but needs to be coordinated with root buccal torque for the whole tooth to move buccally.
7.Sema3A secreted by sensory nerve induces bone formation under mechanical loads
Mei HONGXIANG ; Li ZHENGZHENG ; Lv QINYI ; Li XINGJIAN ; Wu YUMENG ; Feng QINGCHEN ; Jiang ZHISHEN ; Zhou YIMEI ; Zheng YULE ; Gao ZIQI ; Zhou JIAWEI ; Jiang CHEN ; Huang SHISHU ; Li JUAN
International Journal of Oral Science 2024;16(1):62-72
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling.Here,we focused on the role of Semaphorin 3A(Sema3A),expressed by sensory nerves,in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM)model.Firstly,bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold.Sema3A,rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM.Moreover,in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs)within 24 hours.Furthermore,exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload.Mechanistically,Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway,maintaining mitochondrial dynamics as mitochondrial fusion.Therefore,Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation,both as a pain-sensitive analgesic and a positive regulator for bone formation.
8.Sema3A secreted by sensory nerve induces bone formation under mechanical loads
Mei HONGXIANG ; Li ZHENGZHENG ; Lv QINYI ; Li XINGJIAN ; Wu YUMENG ; Feng QINGCHEN ; Jiang ZHISHEN ; Zhou YIMEI ; Zheng YULE ; Gao ZIQI ; Zhou JIAWEI ; Jiang CHEN ; Huang SHISHU ; Li JUAN
International Journal of Oral Science 2024;16(1):62-72
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling.Here,we focused on the role of Semaphorin 3A(Sema3A),expressed by sensory nerves,in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM)model.Firstly,bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold.Sema3A,rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM.Moreover,in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs)within 24 hours.Furthermore,exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload.Mechanistically,Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway,maintaining mitochondrial dynamics as mitochondrial fusion.Therefore,Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation,both as a pain-sensitive analgesic and a positive regulator for bone formation.
9.Sema3A secreted by sensory nerve induces bone formation under mechanical loads
Mei HONGXIANG ; Li ZHENGZHENG ; Lv QINYI ; Li XINGJIAN ; Wu YUMENG ; Feng QINGCHEN ; Jiang ZHISHEN ; Zhou YIMEI ; Zheng YULE ; Gao ZIQI ; Zhou JIAWEI ; Jiang CHEN ; Huang SHISHU ; Li JUAN
International Journal of Oral Science 2024;16(1):62-72
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling.Here,we focused on the role of Semaphorin 3A(Sema3A),expressed by sensory nerves,in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM)model.Firstly,bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold.Sema3A,rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM.Moreover,in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs)within 24 hours.Furthermore,exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload.Mechanistically,Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway,maintaining mitochondrial dynamics as mitochondrial fusion.Therefore,Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation,both as a pain-sensitive analgesic and a positive regulator for bone formation.
10.Sema3A secreted by sensory nerve induces bone formation under mechanical loads
Mei HONGXIANG ; Li ZHENGZHENG ; Lv QINYI ; Li XINGJIAN ; Wu YUMENG ; Feng QINGCHEN ; Jiang ZHISHEN ; Zhou YIMEI ; Zheng YULE ; Gao ZIQI ; Zhou JIAWEI ; Jiang CHEN ; Huang SHISHU ; Li JUAN
International Journal of Oral Science 2024;16(1):62-72
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling.Here,we focused on the role of Semaphorin 3A(Sema3A),expressed by sensory nerves,in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM)model.Firstly,bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold.Sema3A,rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM.Moreover,in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs)within 24 hours.Furthermore,exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload.Mechanistically,Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway,maintaining mitochondrial dynamics as mitochondrial fusion.Therefore,Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation,both as a pain-sensitive analgesic and a positive regulator for bone formation.

Result Analysis
Print
Save
E-mail