1.Rehmanniae Radix Iridoid Glycosides Protect Kidneys of Diabetic Mice by Regulating TGF-β1/Smads Signaling Pathway
Hongwei ZHANG ; Ming LIU ; Huisen WANG ; Wenjing GE ; Xuexia ZHANG ; Qian ZHOU ; Huani LI ; Suqin TANG ; Gengsheng LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):56-66
ObjectiveTo investigate the protective effect of Rehmanniae Radix iridoid glycosides (RIG) on the kidney tissue of streptozotocin (STZ)-induced diabetic mice and explore the underlying mechanism. MethodsTwelve of 72 male C57BL/6J mice were randomly selected as the normal group, and the remaining 60 mice were fed with a high-fat diet for six weeks combined with injection of 60 mg·kg-1 STZ for 4 days to model type 2 diabetes mellitus. The successfully modeled mice were randomized into model, metformin (250 mg·kg-1), catalpol (100 mg·kg-1), low-dose RIG (RIG-L, 200 mg·kg-1) and high-dose RIG (RIG-H, 400 mg·kg-1) groups (n=11). Mice in each group were administrated with corresponding drugs, while those in the normal group and model group were administrated with the same dose of distilled water by gavage once a day. After 8 weeks of intervention, an oral glucose tolerance test (OGTT) was performed, and the area under the curve (AUC) was calculated. After mice were sacrificed, both kidneys were collected. The body weight, kidney weight, and fasting blood glucose (FBG) were measured. Biochemical assays were performed to measure the serum levels of triglycerides (TG), total cholesterol (TC), serum creatinine (SCr), and blood urea nitrogen (BUN). Enzyme-linked immunosorbent assay (ELISA) was employed to determine the serum level of fasting insulin (FINS), and the insulin sensitivity index (ISI) and homeostatic model assessment for insulin resistance (HOMA-IR) were calculated. The pathological changes in kidneys of mice were observed by hematoxylin-eosin staining and Masson staining. The immunohistochemical method (IHC) was employed to assess the expression of interleukin-1 (IL-1), interleukin-6 (IL-6), tumor necrosis factor-α(TNF-α), transforming growth factor-β1 (TGF-β1), and collagen-3 (ColⅢ) in the kidney tissue. The protein levels of TGF-β1, cell signal transduction molecule 3 (Smad3), matrix metalloproteinase-9 (MMP-9), and ColⅢ in kidneys of mice were determined by Western blot. ResultsCompared with the normal group, the model group showcased decreased body weight and ISI (P<0.01), increased kidney weight, FBG, AUC, FINS, HOMA-IR, TC, TG, SCr, and BUN (P<0.01), glomerular hypertrophy, capsular space narrowing, and collagen deposition in the kidney, up-regulated protein levels of IL-1, IL-6, TNF-α, TGF-β1, ColⅢ, and Smad3 (P<0.01), and down-regulated protein level of MMP-9 (P<0.01) in the kidney tissue. Compared with the model group, the treatment groups had no significant difference in the body weight and decreased kidney weight (P<0.05, P<0.01). The FBG level declined in the RIG-H group after treatment for 4-8 weeks and in the metformin, catalpol, and RIG-L groups after treatment for 6-8 weeks (P<0.01). The AUC in the RIG-L, RIG-H, and metformin groups decreased (P<0.05, P<0.01). The levels of TC, SCr, and BUN in the serum of mice in each treatment group became lowered (P<0.05, P<0.01). The level of TG declined in the RIG-L, RIG-H, and metformin groups (P<0.05, P<0.01). The serum level of FINS declined in the catalpol, RIG-L, and metformin groups (P<0.01). Compared with the model group, the treatment groups showed decreased HOMA-IR (P<0.01), increased ISI (P<0.01), alleviated pathological changes in the kidney tissue, and down-regulated expression of IL-1 and TGF-β1. In addition, the protein levels of IL-6, TNF-α, and ColⅢ in the RIG-H and metformin groups and IL-6 and TNF-α in the RIG-L group were down-regulated (P<0.05, P<0.01), and the protein levels of IL-6, TNF-α, and ColⅢ in the catalpol group and ColⅢ in the RIG-L group showed a decreasing trend without statistical difference. The protein levels of TGF-β1, Smad3, and ColⅢ in the RIG-H and metformin groups were down-regulated (P<0.01). Compared with that in the model group, the protein level of MMP-9 was up-regulated in each treatment group (P<0.01). ConclusionRIG can improve the renal structure and function of diabetic mice by regulating the TGF-β1/Smads signaling pathway.
2.Analysis of Dynamic Change Patterns of Color and Composition During Fermentation of Myristicae Semen Koji
Zhenxing WANG ; Mengmeng FAN ; Le NIU ; Suqin CAO ; Hongwei LI ; Zhenling ZHANG ; Hanwei LI ; Jianguang ZHU ; Kai LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):222-229
ObjectiveTo explore the changes in volatile components, total polysaccharides, enzyme activity, and chromaticity value of Myristicae Semen Koji(MSK) during the fermentation process, and conduct correlation analysis. MethodsBased on gas chromatography-mass spectrometry(GC-MS), the changes of volatile components in MSK at different fermentation times were identified. The phenol sulfuric acid method, dinitrosalicylic acid method(DNS), and carboxymethyl cellulose sodium salt method(CMC-Na) were used to investigate the total polysaccharide content, amylase activity, and cellulase activity during the fermentation process. Visual analysis technology was used to explore the changes in chromaticity values, revealing the fermentation process of MSK and the dynamic changes of various measurement indicators, partial least squares-discriminant analysis(PLS-DA) was used to explore the differential compounds of MSK at different fermentation degrees, and Pearson correlation analysis was used to explore the correlation between volatile components of MSK and total polysaccharides, enzyme activity, and chromaticity values. ResultsA total of 60 volatile compounds were identified from MSK, the relative contents of components such as (+)-α-pinene, β-phellandrene, β-pinene, (+)-limonene, and p-cymene obviously increased, while the relative contents of components such as safrole, methyl isoeugenol, methyleugenol, myristicin, and elemicin significantly decreased. During the fermentation process, the total polysaccharide content showed an upward trend, while the activities of amylase and cellulase showed an initial increase followed by a decrease, and reached their maximum value at 40 h. the overall brightness(L*) and total color difference(ΔE*) gradually increased, while the changes in red-green value(a*) and yellow-blue value(b*) were not obvious. PLS-DA results showed that MSK could be clearly distinguished at different fermentation times, and 13 differential biomarkers were screened out. Pearson correlation analysis results showed that the contents of α-terpinene, β-phellandrene, methyleugenol, β-cubebene and myristic acid had an obvious correlation with chromaticity values. ConclusionAfter fermentation, the volatile components, total polysaccharides, amylase activity, and cellulase activity of MSK undergo significant changes, and there is a clear correlation between them and chromaticity values, which reveals the dynamic changes in the fermentation process and related indicators of MSK, laying a foundation for the quality control.
3.Molecular epidemiological characterization of influenza A(H3N2) virus in Fengxian District, Shanghai, in the surveillance year of 2023
Hongwei ZHAO ; Lixin TAO ; Xiaohong XIE ; Yi HU ; Xue ZHAO ; Meihua LIU ; Qingyuan ZHANG ; Lijie LU ; Chen’an LIU ; Mei WU
Shanghai Journal of Preventive Medicine 2025;37(1):18-22
ObjectiveTo understand the epidemiological distribution and gene evolutionary variation of influenza A (H3N2) viruses in Fengxian District, Shanghai, in the surveillance year of 2023, and to provide a reference basis for influenza prevention and control. MethodsThe prevalence of influenza virus in Fengxian District in the 2023 influenza surveillance year (April 2023‒March 2024) was analyzed. The hemagglutinin (HA) gene, neuraminidase (NA) gene, and amino acid sequences of 75 strains of H3N2 influenza viruses were compared with the vaccine reference strain for similarity matching and phylogenetic evolutionary analysis, in addition to an analysis of gene characterization and variation. ResultsIn Fengxian District, there was a mixed epidemic of H3N2 and H1N1 in the spring of 2023, with H3N2 being the predominant subtype in the second half of the year, and Victoria B becoming the predominant subtype in the spring of 2024. A total of 75 influenza strains of H3N2 with HA and NA genes were distributed in the 3C.2a1b.2a.2a.2a.3a.1 and B.4 branches, with overall similarity to the reference strain of the 2024 vaccine higher than that of the reference strain of the 2022 and 2023 vaccine. Compared with the 2023 vaccine reference strain, three antigenic sites and one receptor binding site were changed in HA, with three glycosylation sites reduced and two glycosylation sites added; where as in NA seven antigenic sites and the 222nd resistance site changed with two glycosylation sites reduced. ConclusionThe risk of antigenic variation and drug resistance of H3N2 in this region is high, and it is necessary to strengthen the publicity and education on the 2024 influenza vaccine and long-term monitoring of influenza virus prevalence and variation levels.
4.Gut microbiota and osteoporotic fractures
Wensheng ZHAO ; Xiaolin LI ; Changhua PENG ; Jia DENG ; Hao SHENG ; Hongwei CHEN ; Chaoju ZHANG ; Chuan HE
Chinese Journal of Tissue Engineering Research 2025;29(6):1296-1304
BACKGROUND:Osteoporotic fracture is the most serious complication of osteoporosis.Previous studies have demonstrated that gut microbiota has a regulatory effect on skeletal tissue and that gut microbiota has an important relationship with osteoporotic fracture,but the causal relationship between the two is unclear. OBJECTIVE:To explore the causal relationship between gut microbiota and osteoporotic fractures using Mendelian randomization method. METHODS:The genome-wide association study(GWAS)datasets of gut microbiota and osteoporotic fracture were obtained from the IEU Open GWAS database and the Finnish database R9,respectively.Using gut microbiota as the exposure factor and osteoporotic fracture as the outcome variable,Mendelian randomization analyses with random-effects inverse variance weighted,MR-Egger regression,weighted median,simple model,and weighted model methods were performed to assess whether there is a causal relationship between gut microbiota and osteoporotic fracture.Sensitivity analyses were performed to test the reliability and robustness of the results.Reverse Mendelian randomization analyses were performed to further validate the causal relationship identified in the forward Mendelian randomization analyses. RESULTS AND CONCLUSION:The results of this Mendelian randomization analysis indicated a causal relationship between gut microbiota and osteoporotic fracture.Elevated abundance of Actinomycetales[odds ratio(OR)=1.562,95%confidence interval(CI):1.027-2.375,P=0.037),Actinomycetaceae(OR=1.561,95%CI:1.027-2.374,P=0.037),Actinomyces(OR=1.544,95%CI:1.130-2.110,P=0.006),Butyricicoccus(OR=1.781,95%CI:1.194-2.657,P=0.005),Coprococcus 2(OR=1.550,95%CI:1.068-2.251,P=0.021),Family ⅩⅢ UCG-001(OR=1.473,95%CI:1.001-2.168,P=0.049),Methanobrevibacter(OR=1.274,95%CI:1.001-1.621,P=0.049),and Roseburia(OR=1.429,95%CI:1.015-2.013,P=0.041)would increase the risk of osteoporotic fractures in patients.Elevated abundance of Bacteroidia(OR=0.660,95%CI:0.455-0.959,P=0.029),Bacteroidales(OR=0.660,95%CI:0.455-0.959,P=0.029),Christensenellacea(OR=0.725,95%CI:0.529-0.995,P=0.047),Ruminococcaceae(OR=0.643,95%CI:0.443-0.933,P=0.020),Enterorhabdus(OR=0.558,95%CI:0.395-0.788,P=0.001),Eubacterium rectale group(OR=0.631,95%CI:0.435-0.916,P=0.016),Lachnospiraceae UCG008(OR=0.738,95%CI:0.546-0.998,P=0.048),and Ruminiclostridium 9(OR=0.492,95%CI:0.324-0.746,P=0.001)would reduce the risk of osteoporotic fractures in patients.We identified 16 gut microbiota associated with osteoporotic fracture by the Mendelian randomization method.That is,using gut microbiota as the exposure factor and osteoporotic fracture as the outcome variable,eight gut microbiota showed positive causal associations with osteoporotic fracture and another eight gut microbiota showed negative causal associations with osteoporotic fracture.The results of this study not only identify new biomarkers for the early prediction of osteoporotic fracture and potential therapeutic targets in clinical practice,but also provide an experimental basis and theoretical basis for the study of improving the occurrence and prognosis of osteoporotic fracture through gut microbiota in bone tissue engineering.
5.Research progress on the mechanism and clinical application of the effective ingredients from Sijunzi decoction in the treatment of gastric cancer
Hongwei ZHANG ; Wenfei DANG ; Xin SUO ; Ru ZHANG ; Yan ZHANG ; Ziming JIN ; Xia DOU
China Pharmacy 2025;36(5):624-629
Gastric cancer is a common malignant tumor of the digestive tract and can be classified as “fullness of the stomach”, “epigastric pain”, “noise” and other categories in the field of traditional Chinese medicine. Sijunzi decoction is composed of Panax ginseng, Poria cocos, Atractylodes macrocephala, and honey-fried Glycyrrhiza uralensis, and it has the effect of tonifying qi and strengthening the spleen. This article summarizes the active ingredients, mechanism of action, and clinical application research progress of Sijunzi decoction in treating gastric cancer. The results show that the main active ingredients of Sijunzi decoction include ginsenosides, atractylenolide, pachymic acid, glycyrrhizic acid, etc.; Sijunzi decoction and its effective ingredients can play an anti-gastric cancer role by inhibiting the proliferation of gastric cancer cell, inducing apoptosis of gastric cancer cell, enhancing gastric cancer cell chemotherapy sensitivity, and inhibiting invasion and metastasis of gastric cancer cell. In addition, Sijunzi decoction can enhance the efficacy of chemotherapy drugs, strengthen the immune function of the body and lower serum cancer marker levels during the clinical treatment of gastric cancer.
6.Risk assessment of human Spirometra mansoni infections and cross-sectional study on knowledge, attitude and practice towards sparganosis in endemic areas of Henan Province
Yalan ZHANG ; Tiantian JIANG ; Xiaohui MA ; Yan DENG ; Weiqi CHEN ; Yankun ZHU ; Zhenqiang TANG ; Xi-meng LIN ; Hongwei ZHANG
Chinese Journal of Schistosomiasis Control 2025;37(2):190-195
Objective To assess the risk of human Spirometra mansoni infections and investigate the knowledge, attitude and practice (KAP) towards sparganosis mansoni among residents in Henan Province, so as to provide insights into formulation of the sparganosis mansoni control measures. Methods Qinling Village in Fugou County of Zhoukou City, Bali Village in Yancheng District of Luohe City, Duzhai Village in Puyang County of Puyang City and Doushan Village in Luoshan County of Xinyang City were sampled as survey sites in Henan Province from July to August 2023, and more than 40 frogs were sampled from ponds or streams in each survey site for detection of Sparganum mansoni infections. At least 150 residents were sampled using a cluster sampling method from each survey site, and the sero-prevalence of anti-S. mansoni IgG antibody was estimated. In addition, a questionnaire survey was conducted on the KAP towards sparganosis mansoni among participants, and the proportion of eligible KAP, rate of correct KAP and KAP scores were calculated. Results A total 229 frogs were collected from 4 survey sites in 2023, and the overall prevalence of S. mansoni infection was 4.37% (10/229) in frogs, with 7.75% (10/129) prevalence in wild frogs and 0 in farm-bred frogs. A questionnaire survey was performed among 649 residents sampled from 4 survey sites, and 649 serum samples were collected. The seroprevalence of anti-S.mansoni IgG antibody was 0.15% (1/649) and the overall proportion of eligible KAP was 23.73% (154/649) among participants. There were age- (χ2 = 30.905, P = 0.000), educational level- (χ2 = 41.011, P = 0.000), and occupation-specific proportions of eligible KAP among participants (χ2 = 10.721, P = 0.005), and the proportion of eligible KAP decreased with age (χ2 trend = 22.717, P = 0.000) and increased with education levels (χ2 trend = 40.025, P = 0.000). The rates of correct KAP towards sparganosis mansoni were 40.81% (2 119/5 192), 96.66% (1 882/1 947) and 63.81% (3 727/5 841) (χ2 = 1 913.731, P = 0.000) among residents, respectively. The rates of correct KAP towards sparganosis mansoni varied significantly among survey sites (χ2 = 136.872, 42.347 and 255.157; all P values= 0.000, with the highest rate of correct knowledge (51.94%, 748/1 440) and practices (75.86%, 1 229/1 620) in Yancheng District of Luohe City and the highest rate of correct attitudes in Puyang County of Puyang City (99.11%, 446/450) (all P values< 0.05). Conclusions There is still a high transmission risk of sparganosis mansoni in Henan Province, and the KAP towards sparganosis mansoni is required to be improved among residents.
7.Targeting TM4SF1 promotes tumor senescence enhancing CD8+ T cell cytotoxic function in hepatocellular carcinoma
Weifeng ZENG ; Furong LIU ; Yachong LIU ; Ze ZHANG ; Haofan HU ; Shangwu NING ; Hongwei ZHANG ; Xiaoping CHEN ; Zhibin LIAO ; Zhanguo ZHANG
Clinical and Molecular Hepatology 2025;31(2):489-508
Background/Aims:
Transmembrane 4 L six family member 1 (TM4SF1) is highly expressed and contributes to the progression of various malignancies. However, how it modulates hepatocellular carcinoma (HCC) progression and senescence remains to be elucidated.
Methods:
TM4SF1 expression in HCC samples was evaluated using immunohistochemistry and flow cytometry. Cellular senescence was assessed through SA-β-gal activity assays and Western blot analysis. TM4SF1-related protein interactions were investigated using immunoprecipitation-mass spectrometry, co-immunoprecipitation, bimolecular fluorescence complementation, and immunofluorescence. Tumor-infiltrating immune cells were analyzed by flow cytometry. The HCC mouse model was established via hydrodynamic tail vein injection.
Results:
TM4SF1 was highly expressed in human HCC samples and murine models. Knockdown of TM4SF1 suppressed HCC proliferation both in vitro and in vivo, inducing non-secretory senescence through upregulation of p16 and p21. TM4SF1 enhanced the interaction between AKT1 and PDPK1, thereby promoting AKT phosphorylation, which subsequently downregulated p16 and p21. Meanwhile, TM4SF1-mediated AKT phosphorylation enhanced PD-L1 expression while reducing major histocompatibility complex class I level on tumor cells, leading to impaired cytotoxic function of CD8+ T cells and an increased proportion of exhausted CD8+ T cells. In clinical HCC samples, elevated TM4SF1 expression was associated with resistance to anti-PD-1 immunotherapy. Targeting TM4SF1 via adeno-associated virus induced tumor senescence, reduced tumor burden and synergistically enhanced the efficacy of anti-PD-1 therapy.
Conclusions
Our results revealed that TM4SF1 regulated tumor cell senescence and immune evasion through the AKT pathway, highlighting its potential as a therapeutic target in HCC, particularly in combination with first-line immunotherapy.
8.Targeting TM4SF1 promotes tumor senescence enhancing CD8+ T cell cytotoxic function in hepatocellular carcinoma
Weifeng ZENG ; Furong LIU ; Yachong LIU ; Ze ZHANG ; Haofan HU ; Shangwu NING ; Hongwei ZHANG ; Xiaoping CHEN ; Zhibin LIAO ; Zhanguo ZHANG
Clinical and Molecular Hepatology 2025;31(2):489-508
Background/Aims:
Transmembrane 4 L six family member 1 (TM4SF1) is highly expressed and contributes to the progression of various malignancies. However, how it modulates hepatocellular carcinoma (HCC) progression and senescence remains to be elucidated.
Methods:
TM4SF1 expression in HCC samples was evaluated using immunohistochemistry and flow cytometry. Cellular senescence was assessed through SA-β-gal activity assays and Western blot analysis. TM4SF1-related protein interactions were investigated using immunoprecipitation-mass spectrometry, co-immunoprecipitation, bimolecular fluorescence complementation, and immunofluorescence. Tumor-infiltrating immune cells were analyzed by flow cytometry. The HCC mouse model was established via hydrodynamic tail vein injection.
Results:
TM4SF1 was highly expressed in human HCC samples and murine models. Knockdown of TM4SF1 suppressed HCC proliferation both in vitro and in vivo, inducing non-secretory senescence through upregulation of p16 and p21. TM4SF1 enhanced the interaction between AKT1 and PDPK1, thereby promoting AKT phosphorylation, which subsequently downregulated p16 and p21. Meanwhile, TM4SF1-mediated AKT phosphorylation enhanced PD-L1 expression while reducing major histocompatibility complex class I level on tumor cells, leading to impaired cytotoxic function of CD8+ T cells and an increased proportion of exhausted CD8+ T cells. In clinical HCC samples, elevated TM4SF1 expression was associated with resistance to anti-PD-1 immunotherapy. Targeting TM4SF1 via adeno-associated virus induced tumor senescence, reduced tumor burden and synergistically enhanced the efficacy of anti-PD-1 therapy.
Conclusions
Our results revealed that TM4SF1 regulated tumor cell senescence and immune evasion through the AKT pathway, highlighting its potential as a therapeutic target in HCC, particularly in combination with first-line immunotherapy.
9.Targeting TM4SF1 promotes tumor senescence enhancing CD8+ T cell cytotoxic function in hepatocellular carcinoma
Weifeng ZENG ; Furong LIU ; Yachong LIU ; Ze ZHANG ; Haofan HU ; Shangwu NING ; Hongwei ZHANG ; Xiaoping CHEN ; Zhibin LIAO ; Zhanguo ZHANG
Clinical and Molecular Hepatology 2025;31(2):489-508
Background/Aims:
Transmembrane 4 L six family member 1 (TM4SF1) is highly expressed and contributes to the progression of various malignancies. However, how it modulates hepatocellular carcinoma (HCC) progression and senescence remains to be elucidated.
Methods:
TM4SF1 expression in HCC samples was evaluated using immunohistochemistry and flow cytometry. Cellular senescence was assessed through SA-β-gal activity assays and Western blot analysis. TM4SF1-related protein interactions were investigated using immunoprecipitation-mass spectrometry, co-immunoprecipitation, bimolecular fluorescence complementation, and immunofluorescence. Tumor-infiltrating immune cells were analyzed by flow cytometry. The HCC mouse model was established via hydrodynamic tail vein injection.
Results:
TM4SF1 was highly expressed in human HCC samples and murine models. Knockdown of TM4SF1 suppressed HCC proliferation both in vitro and in vivo, inducing non-secretory senescence through upregulation of p16 and p21. TM4SF1 enhanced the interaction between AKT1 and PDPK1, thereby promoting AKT phosphorylation, which subsequently downregulated p16 and p21. Meanwhile, TM4SF1-mediated AKT phosphorylation enhanced PD-L1 expression while reducing major histocompatibility complex class I level on tumor cells, leading to impaired cytotoxic function of CD8+ T cells and an increased proportion of exhausted CD8+ T cells. In clinical HCC samples, elevated TM4SF1 expression was associated with resistance to anti-PD-1 immunotherapy. Targeting TM4SF1 via adeno-associated virus induced tumor senescence, reduced tumor burden and synergistically enhanced the efficacy of anti-PD-1 therapy.
Conclusions
Our results revealed that TM4SF1 regulated tumor cell senescence and immune evasion through the AKT pathway, highlighting its potential as a therapeutic target in HCC, particularly in combination with first-line immunotherapy.
10.Successful Pregnancy after Autologous Cryopreserved Ovarian Tissue Transplantation in a Cervical Cancer Patient: the First Reported Case in China
Yubin LI ; Yang ZHANG ; Tian MENG ; Bing CAI ; Chuling WU ; Changxi WANG ; Hongwei SHEN ; Guofen YANG
Journal of Sun Yat-sen University(Medical Sciences) 2025;46(3):498-505
ObjectiveTo investigate the efficacy of ovarian tissue cryopreservation and autologous transplantation in preserving fertility and ovarian endocrine function in patients with cervical cancer. MethodsA 26-year-old patient with stage ⅡA1 cervical cancer underwent ovarian tissue harvesting and cryopreservation during cancer surgery. Following complete remission of the cancer, autologous ovarian tissue transplantation was performed. Follow-up monitoring included assessment of menopausal symptoms, hormone levels, and follicular development. ResultsSix months after transplantation, follicle-stimulating hormone levels decreased to 6.60 U/L, and estradiol levels increased from <10.00 ng/L to 89.00 ng/L. At 10 months after transplantation, ultrasound monitoring confirmed follicular development and physiological ovulation in the transplanted ovarian tissue. By 15 months after transplantation, follicle-stimulating hormone levels remained stable at 7.24 U/L, and estradiol levels further increased to 368.00 ng/L. Over 2 years after transplantation, the patient successfully gave birth to a healthy baby through assisted reproductive technology. ConclusionThe restoration of endocrine and ovulation functions in the transplanted cryopreserved ovarian tissue, followed by successful pregnancy, demonstrates the clinical success of ovarian tissue transplantation.

Result Analysis
Print
Save
E-mail