1.Licorice-saponin A3 is a broad-spectrum inhibitor for COVID-19 by targeting viral spike and anti-inflammation
Yang YI ; Wenzhe LI ; Kefang LIU ; Heng XUE ; Rong YU ; Meng ZHANG ; Yang-Oujie BAO ; Xinyuan LAI ; Jingjing FAN ; Yuxi HUANG ; Jing WANG ; Xiaomeng SHI ; Junhua LI ; Hongping WEI ; Kuanhui XIANG ; Linjie LI ; Rong ZHANG ; Xin ZHAO ; Xue QIAO ; Hang YANG ; Min YE
Journal of Pharmaceutical Analysis 2024;14(1):115-127
Currently,human health due to corona virus disease 2019(COVID-19)pandemic has been seriously threatened.The coronavirus severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)spike(S)protein plays a crucial role in virus transmission and several S-based therapeutic approaches have been approved for the treatment of COVID-19.However,the efficacy is compromised by the SARS-CoV-2 evolvement and mutation.Here we report the SARS-CoV-2 S protein receptor-binding domain(RBD)inhibitor licorice-saponin A3(A3)could widely inhibit RBD of SARS-CoV-2 variants,including Beta,Delta,and Omicron BA.1,XBB and BQ1.1.Furthermore,A3 could potently inhibit SARS-CoV-2 Omicron virus in Vero E6 cells,with EC50 of 1.016 pM.The mechanism was related to binding with Y453 of RBD deter-mined by hydrogen-deuterium exchange mass spectrometry(HDX-MS)analysis combined with quan-tum mechanics/molecular mechanics(QM/MM)simulations.Interestingly,phosphoproteomics analysis and multi fluorescent immunohistochemistry(mIHC)respectively indicated that A3 also inhibits host inflammation by directly modulating the JNK and p38 mitogen-activated protein kinase(MAPK)path-ways and rebalancing the corresponding immune dysregulation.This work supports A3 as a promising broad-spectrum small molecule drug candidate for COVID-19.
2.16S rDNA Sequencing Reveals Effect of Tanreqing Injection on Pulmonary Flora in Rat Model of COPD
Qian LUO ; Rui FU ; Bo PENG ; Weiya CHEN ; Xiaolu WEI ; Tengfei CHEN ; Ling SONG ; Yunhang GAO ; Guangping ZHANG ; Hongping HOU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(23):98-103
ObjectiveTo study the effect of Tanreqing injection (TRQ) on the pulmonary flora in the rat model of chronic obstructive pulmonary disease (COPD). MethodWistar rats were randomized into control, model, and TRQ groups. The rats in other groups except the control group were treated by smoking combined with intratracheal instillation of lipopolysaccharide for the modeling of COPD. The TRQ group was intraperitoneally injected with TRQ (2 g·kg-1). At the end of the experiment, after blood collection from the abdominal aorta of the rats, the lung tissue was collected for hematoxylin-eosin and picric sirius red staining to reveal the pathological changes. The lung lavage fluid was collected, and the diversity and relative abundance of lung flora in different groups were analyzed by 16S rDNA amplicon sequencing. ResultThe lungs of the control group were normal, and those of the model group showed neutrophil infiltration, telangiectasia, lung hemorrhage and emphysema in individual cases, and thickening of collagen fibers in the trachea. Compared with the model group, the TRQ group showed significantly improved lungs and recovered collagen fibers. The MLI analysis showed that compared with the control group, the model group showcased increased alveolar space (P<0.01), which was reduced in the TRQ group (P<0.05). Compared with the control group, the model group showed increased wall thickness (P<0.01), and the increase was attenuated in the TRQ group (P<0.01). TRQ increased the Simpson index and altered the α diversity of pulmonary flora. The results of principal co-ordinate analysis showed that TRQ changed the β diversity and reduced the β diversity index of pulmonary flora. At the genus level, the model group showed increased relative abundance of g_Bacillus and g_Brevundimonas and decreased relative abundance of g_Pseudomonas, compared with the control group. After treatment with TRQ, the relative abundance of g_Stenotrophomonas increased, and that of g_Bacillus decreased. The LEfSe of differential taxa between groups showed that the modeling increased the relative abundance of g_Lachnospiraceae_NK4A136_group, and TRQ treatment increased the relative abundance of g_Rhodococcus and g_Stenotrophomonas. ConclusionTRQ can regulate the diversity of pulmonary flora and restore the balance of bacterial genera in the rat model of COPD, which may be one of the mechanisms of the prevention and treatment of COPD with TRQ.
3.A case of hypopharyngeal amyloidosis by digestive endoscopy
Ling HE ; Wei SU ; Lingli LI ; Qiao ZHOU ; Qiuling ZHAO ; Hongping LI
Journal of Central South University(Medical Sciences) 2024;49(4):643-648
Amyloidosis is a rare disease.This paper reports a case of localized secondary hypopharyngeal amyloidosis presenting with pulmonary tuberculosis as the initial symptom.The patient lacked specific clinical manifestations and primarily exhibited symptoms such as cough,sputum production,acid reflux,belching,and abdominal pain.Chest CT indicated bronchiectasis with infection and pulmonary tuberculosis.Digestive endoscopy revealed a white mucosal elevation at the right pyriform sinus of the hypopharynx.Pathological diagnosis confirmed amyloid deposits in the hypopharyngeal mucosal tissue.The patient tested positive for anti-amyloid A antibodies,Congo red staining(+),and periodate Schiff staining(+).Amyloidosis commonly affects the digestive system and may have various etiologies,often presenting with symptoms that overlap with other digestive system diseases,leading to frequent misdiagnosis and missed optimal treatment opportunities.The hypopharynx,a highly folded and narrow chamber that serves as a common passage for the digestive and respiratory tracts,can be effectively evaluated for amyloidosis using digestive endoscopy.
4.Copper Deficiency Myeloneuropathy in a Patient With Wilson’s Disease
Yu WANG ; Zijun WEI ; Jianing MEI ; Xueyi HAN ; Hongping ZHAO ; Yulong ZHU ; Ping JIN ; Yunyun ZHANG
Journal of Movement Disorders 2024;17(1):123-126
5.Research progress on medical image dataset expansion methods.
Ying CHEN ; Hongping LIN ; Wei ZHANG ; Longfeng FENG ; Cheng ZHENG ; Taohui ZHOU ; Zhen YI ; Lan LIU
Journal of Biomedical Engineering 2023;40(1):185-192
Computer-aided diagnosis (CAD) systems play a very important role in modern medical diagnosis and treatment systems, but their performance is limited by training samples. However, the training samples are affected by factors such as imaging cost, labeling cost and involving patient privacy, resulting in insufficient diversity of training images and difficulty in data obtaining. Therefore, how to efficiently and cost-effectively augment existing medical image datasets has become a research hotspot. In this paper, the research progress on medical image dataset expansion methods is reviewed based on relevant literatures at home and abroad. First, the expansion methods based on geometric transformation and generative adversarial networks are compared and analyzed, and then improvement of the augmentation methods based on generative adversarial networks are emphasized. Finally, some urgent problems in the field of medical image dataset expansion are discussed and the future development trend is prospected.
Humans
;
Diagnosis, Computer-Assisted
;
Diagnostic Imaging
;
Datasets as Topic
6.A survey of loss function of medical image segmentation algorithms.
Ying CHEN ; Wei ZHANG ; Hongping LIN ; Cheng ZHENG ; Taohui ZHOU ; Longfeng FENG ; Zhen YI ; Lan LIU
Journal of Biomedical Engineering 2023;40(2):392-400
Medical image segmentation based on deep learning has become a powerful tool in the field of medical image processing. Due to the special nature of medical images, image segmentation algorithms based on deep learning face problems such as sample imbalance, edge blur, false positive, false negative, etc. In view of these problems, researchers mostly improve the network structure, but rarely improve from the unstructured aspect. The loss function is an important part of the segmentation method based on deep learning. The improvement of the loss function can improve the segmentation effect of the network from the root, and the loss function is independent of the network structure, which can be used in various network models and segmentation tasks in plug and play. Starting from the difficulties in medical image segmentation, this paper first introduces the loss function and improvement strategies to solve the problems of sample imbalance, edge blur, false positive and false negative. Then the difficulties encountered in the improvement of the current loss function are analyzed. Finally, the future research directions are prospected. This paper provides a reference for the reasonable selection, improvement or innovation of loss function, and guides the direction for the follow-up research of loss function.
Algorithms
;
Image Processing, Computer-Assisted
7.Schaftoside inhibits 3CLpro and PLpro of SARS-CoV-2 virus and regulates immune response and inflammation of host cells for the treatment of COVID-19.
Yang YI ; Meng ZHANG ; Heng XUE ; Rong YU ; Yang-Oujie BAO ; Yi KUANG ; Yue CHAI ; Wen MA ; Jing WANG ; Xiaomeng SHI ; Wenzhe LI ; Wei HONG ; Junhua LI ; Elishiba MUTURI ; Hongping WEI ; Joachim WLODARZ ; Szczepan ROSZAK ; Xue QIAO ; Hang YANG ; Min YE
Acta Pharmaceutica Sinica B 2022;12(11):4154-4164
It is an urgent demand worldwide to control the coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The 3-chymotrypsin-like protease (3CLpro) and papain-like protease (PLpro) are key targets to discover SARS-CoV-2 inhibitors. After screening 12 Chinese herbal medicines and 125 compounds from licorice, we found that a popular natural product schaftoside inhibited 3CLpro and PLpro with IC50 values of 1.73 ± 0.22 and 3.91 ± 0.19 μmol/L, respectively, and inhibited SARS-CoV-2 virus in Vero E6 cells with EC50 of 11.83 ± 3.23 μmol/L. Hydrogen-deuterium exchange mass spectrometry analysis, quantum mechanics/molecular mechanics calculations, together with site-directed mutagenesis indicated the antiviral activities of schaftoside were related with non-covalent interactions with H41, G143 and R188 of 3CLpro, and K157, E167 and A246 of PLpro. Moreover, proteomics analysis and cytokine assay revealed that schaftoside also regulated immune response and inflammation of the host cells. The anti-inflammatory activities of schaftoside were confirmed on lipopolysaccharide-induced acute lung injury mice. Schaftoside showed good safety and pharmacokinetic property, and could be a promising drug candidate for the prevention and treatment of COVID-19.
8.Summary of the best evidence for the prevention of perioperative delirium in elderly patients with fractures
Qingqing WU ; Hongping YANG ; Li NING ; Li WANG ; Mixia ZHANG ; Mei WEI ; Chengjuan ZHANG ; Mengying YU ; Aihua XU ; Xiaodong CAI
Chinese Journal of Modern Nursing 2020;26(27):3712-3717
Objective:To retrieve, evaluate and summarize the evidence of perioperative delirium prevention and care in elderly patients with fractures, and provide a basis for standardized prevention, care and management in clinical practice.Methods:The evidence was systematically retrieved from the Guidelines International Network, National Guidelines Library, Institute for Healthcare Optimization, UpToDate, BMJ Best Practice, Joanna Briggs Institute Center for Evidence Based Health Care, Cochrane Library, Yimaitong, CINAHL, Embase, BMJ, PubMed, CNKI , Wanfang, and China Biology Medicine disc (CBMdisc) , including guidelines, evidence summary, systematic reviews, best practice information, and randomized controlled trials (RCT) published up to December 1, 2019.Results:Finally, 15 articles were included, including 2 clinical decision-making, 5 guidelines, 5 systematic reviews, 2 summaries of evidence, and 1 RCT. The best evidence included 11 aspects such as delirium risk factor assessment, assessment tools, assessment timing, and qualifications of assessors, with a total of 25 pieces of evidence.Conclusions:Perioperative delirium in elderly patients with fractures has not yet gained the full attention from healthcare professionals. Medical institutions should establish standardized procedures for the evaluation, prevention, and care of elderly patients with fractures based on evidence-based evidence transformation, improve the health education system for medical staff and patients, formulate corresponding norms, improve the level of delirium care, and improve patients' outcomes.
9. Research progress in the heatstroke-induced myocardial injury
Yunpeng LOU ; Huiyan LIN ; Hongping WANG ; Wei CHEN ; Yutian WU ; Hailing LI
Chinese Critical Care Medicine 2019;31(10):1304-1306
Heat stroke is the most serious type of heat-related diseases, and the induced multiple organ dysfunction syndrome (MODS) is an important cause of death for heat stroke patients. The cardiovascular system is one of the important targets of heat injury. Studies have reported that heat stress can lead to myocardial inhibition, abnormal heart conduction and blood flow redistribution, thus changing the hemodynamic state, leading to obvious abnormalities in electrocardiogram, echocardiography, myocardial injury biological markers and hemodynamic indicators of patients with heat stroke. In this article, the pathophysiological and histological changes and clinical manifestations of heatstroke-induced myocardial injury are reviewed, aiming to provide references for further understanding and research of myocardial damage caused by hyperthermia.
10. In vitro study of effects of transient receptor potential vanilloid 1 on autophagy in early hypoxic mouse cardiomyocytes and the mechanism
Jinyu WEI ; Lin CUI ; Jiezhi LIN ; Qiong ZHANG ; Hongping YUAN ; Fei XIANG ; Huapei SONG ; Jiezhi JIA ; Yanling LYU ; Dongxia ZHANG ; Yuesheng HUANG
Chinese Journal of Burns 2019;35(3):186-192
Objective:
To explore the effects of transient receptor potential vanilloid 1 (TRPV1) on autophagy in early hypoxic mouse cardiomyocytes and the mechanism in vitro.
Methods:
The hearts of 120 C57BL/6 mice aged 1-2 days, no matter male or female, were isolated, and then primary cardiomyocytes were cultured and used for the following experiments, the random number table was used for grouping. (1) The cells were divided into normoxia group and hypoxia 3, 6, and 9 h groups, with one well in each group. The cells in normoxia group were routinely cultured (the same below), the cells in hypoxia 3, 6, and 9 h groups were treated with fetal bovine serum-free and glucose-free Dulbecco′ s modified Eagle medium under low oxygen condition in a volume fraction of 1% oxygen, 5% carbon dioxide, and 94% nitrogen for 3, 6, and 9 h, respectively. The protein expressions of microtubule-associated protein 1 light chain 3 (LC3), Beclin-1, TRPV1 were determined with Western botting. (2) The cells were divided into normoxia group and hypoxia group, with two coverslips in each group. The cells in hypoxia group were treated with hypoxia for 6 h as above. The positive expression of TRPV1 was detected by immunofluorescence assay. (3) The cells were divided into 4 groups, with one well in each group. The cells in simple hypoxia group were treated with hypoxia for 6 h as above, and the cells in hypoxia+ 0.1 μmol/L capsaicin group, hypoxia+ 1.0 μmol/L capsaicin group, and hypoxia+ 10.0 μmol/L capsaicin group were respectively treated with 0.1, 1.0, 10.0 μmol/L capsaicin for 30 min before hypoxia for 6 h. The protein expressions of LC3, Beclin-1, and TRPV1 were detected by Western blotting. (4) The cells were divided into 5 groups, with 5 wells in each group. The cells in hypoxia group were treated with hypoxia for 6 h as above, the cells in hypoxia+ chloroquine group, hypoxia+ capsaicin group, and hypoxia+ capsaicin+ chloroquine group were treated with hypoxia for 6 h after being cultured with 50 μmol/L chloroquine, 10.0 μmol/L capsaicin, and 50 μmol/L chloroquine+ 10.0 μmol/L capsaicin for 30 min, respectively. Viability of cells was detected by cell counting kit 8 assay. (5) The cells were divided into simple hypoxia group and hypoxia+ 10.0 μmol/L capsaicin group, with one well in each group. The cells in hypoxia group were treated with hypoxia for 6 h as above, the cells in hypoxia+ 10.0 μmol/L capsaicin group were treated with 10.0 μmol/L capsaicin for 30 minutes and then with hypoxia for 6 h. The protein expressions of lysosomal associated membrane protein 1 (LAMP-1) and LAMP-2 were detected by Western blotting. Each experiment was repeated for 3 or 5 times. Data were processed with one-way analysis of variance, least significant difference

Result Analysis
Print
Save
E-mail