1.Clinical application and efficacy analysis of castor stent graft in the treatment of aortic diseases
Jiaxiang ZHUANG ; Ren WANG ; Xianlu MA ; Qi XIE ; Zhi DOU ; Fuzhen ZHENG ; Haiyu CHEN ; Yuanxiang CHEN ; Licheng YAN ; Hongjie ZHOU
Chinese Journal of Thoracic and Cardiovascular Surgery 2024;40(2):79-84
Objective:To summarize the use of Castor stent graft in aortic diseases and to analyze their efficacy.Methods:The clinical data of patients with aortic diseases treated with Castor stent graft from November 2017 to August 2022 in Fujian Provincial Hospital were collected and divided into branched stent group and branched stent co-operative group according to the operation method, and the clinical data of both groups were summarized.Results:A total of 75 cases of aortic disease were treated with Castor stents, and finally 53 cases were classified as branched stent group and 22 cases as branched stent co-operative group. The operations in both groups were successful. The median operative time in the branched stent group was 120(100, 160)min, and the median postoperative hospital stay was 7.0(5.5, 10.5)days.There was no postoperative ischemic stroke, no spinal cord ischemia. One case of new aortic dissection occurred. During follow-up, there was one lost case and two deaths, and the rest did not have endoleak, branch stent stenosis, ischemic stroke or re-intervention. In the branched stent co-operative group, there was one postoperative ischemic stroke, one case of slight stenosis of the left subclavian artery stent during follow-up, the remaining cases had satisfactory postoperative outcomes.Conclusion:Castor stent graft is a safe and effective procedure in the treatment of aortic diseases. And Castor stent graft can be used in combination with other endovascular repair techniques in the treatment of complex aortic diseases, with safe and reliable postoperative outcomes.
2.New research direction of organ dysfunction caused by hemorrhagic shock: mechanisms of mitochondrial quality control
Zheng ZHANG ; Hongjie DUAN ; Jiake CHAI ; Xiaofang ZOU ; Shaofang HAN ; Hailiang BAI ; Yufang ZHANG ; Huiting YUN ; Ran SUN
Chinese Critical Care Medicine 2024;36(1):93-97
Hemorrhagic shock (HS) is one of the leading causes of death among young adults worldwide. Multiple organ dysfunction in HS is caused by an imbalance between tissue oxygen supply and demand, which is closely related to the poor prognosis of patient. Mitochondrial dysfunction is one of the key mechanisms contributing to multiple organ dysfunction in HS, while mitochondrial quality control regulates mitochondrial function through a series of processes, including mitochondrial biogenesis, mitochondrial dynamics, mitophagy, mitochondrial-derived vesicles, and mitochondrial protein homeostasis. Modulating mitochondrial quality control can improve organ dysfunction. This review aims to summarize the effects of mitochondrial dysfunction on organ function in HS and discuss the potential mechanisms of mitochondrial quality control, providing insights into the injury mechanisms underlying HS and guiding clinical management.
3.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
4.Efficacy Evaluation of Qishen Yizhi Formula in Improving the Learning and Memory Ability of D-Galactose Induced Suba-cute Aging Mice
Yang CHEN ; Ziqiang ZHU ; Yunqing LU ; Jiani ZHENG ; Cheng CAO ; Jiaxiang TONG ; Xuan LI ; Sheng GUO ; Hongjie KANG ; Jinao DUAN ; Yue ZHU
Journal of Nanjing University of Traditional Chinese Medicine 2024;40(2):145-152
OBJECTIVE To evaluate the effect of Qishen Yizhi formula on improving learning and memory ability in D-galactose subcutaneous injection induced subacute aging mice.METHODS Subacute aging mice model mice were developed by D-galactose subcutaneous injection and then treated with positive drug donepezil(2 mg·kg-1·d-1)and Qishen Yizhi formula water extracts in low(1.33 g·kg-1·d-1)and high dose group(2.67 g·kg-1·d-1).The learning and memory abilities of mice were evaluated using Morris water maze and Y maze tests;HE staining was used to examine hippocampal damage in model mice;TUNEL was used to detect apoptosis of mouse hippocampal tissue;ELISA was used to detect the expression levels of oxidative stress factors and inflammatory fac-tors in the mouse hippocampus tissue;Western blot was used to detect the expression of signaling pathway proteins related to apoptosis,oxidative stress and inflammatory stress in the hippocampus of mice.RESULTS The water extract of Qishen Yizhi formula signifi-cantly shortened the latency and distance of model mice for reaching the platform in the water maze test(P<0.01),and significantly increased the number of crossing the platform(P<0.01);increased the exploration time and number of the Y maze new arm in model mice(P<0.05);inhibited the TUNEL fluorescence expression in the hippocampus of model mice(P<0.01);upregulated the activity of the oxidative stress factor superoxide dismutase(SOD)(P<0.05)and glutathione(GSH)content(P<0.05),and downregulated malondialdehyde(MDA)content(P<0.05);reduced interleukin(IL)-1β,IL-6 and tumor necrosis factor(TNF-α)expression levels(P<0.05,P<0.01);decreased the expression of apoptosis signaling pathway proteins Cleaved Caspase-3 and Caspase-3(P<0.05),upregulated the expression of oxidative stress signaling pathway proteins Nrf2 and HO-1(P<0.05),and downregulated the expression of inflammatory stress signaling pathway proteins p-NF-κB and NF-κB(P<0.05).CONCLUSION Qishen Yizhi for-mula can improve the learning and memory ability of subacute aging model mice injected with D-galactose,which may be related to its inhibitory effect on hippocampal oxidative stress and inflammatory stress.
5.Efficacy and safety of chimeric antigen receptor T-cell therapy followed by allogeneic hematopoietic stem cell transplantation in 21 patients with Ph-like acute lymphoblastic leukemia
Haiping DAI ; Hongjie SHEN ; Zheng LI ; Wei CUI ; Qingya CUI ; Mengyun LI ; Sifan CHEN ; Mingqing ZHU ; Depei WU ; Xiaowen TANG
Chinese Journal of Hematology 2024;45(1):35-40
Objective:To evaluate the efficacy and safety of chimeric antigen receptor T-cell (CAR-T) therapy followed by allogeneic hematopoietic stem cell transplantation (allo-HSCT) in patients with Ph-like acute lymphoblastic leukemia (Ph-ALL) .Methods:Patients with Ph-ALL who underwent CAR-T therapy followed by allo-HSCT from March 2018 to August 2023 at the First Affiliated Hospital of Soochow University were included, and their clinical data were retrospectively analyzed.Results:Of the 21 patients, 14 were male and 7 were female. The median age at the time of CAR-T therapy was 22 (6-50) years. Seven patients had ABL1-like rearrangements, and 14 had JAK-STAT rearrangements. Prior to CAR-T therapy, 12 patients experienced hematologic relapse; 7 were multiparameter flow cytometry minimal residual disease (MFC-MRD) -positive and 2 were MFC-MRD-negative. CAR-T cells were derived from patients’ autologous lymphocytes. Nine patients were treated with CD19 CAR-T cells, and 12 were treated with CD19/CD22 CAR-T cells. After assessment on day 28 after CAR-T therapy, 95.2% of the patients achieved complete remission, with an MRD-negative remission rate of 75%. Nineteen patients developed grade 0–2 cytokine release syndrome (CRS) and 2 patients suffered grade 3 CRS, all cases of which resolved after treatment. All patients underwent allo-HSCT after CAR-T therapy. The median time from CAR-T therapy to allo-HSCT was 63 (38-114) days. Five patients experienced relapse after CAR-T therapy, including four with hematologic relapse and one with molecular relapse. The 3-year overall survival (OS) rates in the ABL1 and JAK-STAT groups were (83.3±15.2) % and (66.6±17.2) %, respectively ( P=0.68) . The 3-year relapse-free survival (RFS) rates were (50.0±20.4) % and (55.6±15.4) % in the ABL1 and JAK-STAT groups, respectively. There was no significant difference in 3-year OS or RFS between the two groups. Conclusions:CAR-T therapy followed by allo-HSCT leads to rapid remission in most patients with Ph-ALL and prolongs leukemia-free survival.
6.Analysis of risk factors for antibiot-associated diarrhea in sepsis patients
Weitao ZHENG ; Shengchao WANG ; Xing SHAO ; Hongjie TONG ; Kun CHEN
China Modern Doctor 2024;62(18):8-12
Objective To explore the incidence and risk factors of antibiot-associated diarrhea(AAD)in patients with sepsis.Methods A total of 126 patients with sepsis admitted to Department of Critical Care Medicine,Jinhua Hospital Affiliated to Zhejiang University School of Medicine from July 2021 to July 2023 were selected as the subjects.They were divided into AAD group and non AAD group based on whether AAD occurred.Compare the clinical data and antibiotic use between two groups of patients,and use Logistic regression analysis to identify the risk factors for AAD in sepsis patients.Results There were 72 cases of respiratory system infections,18 cases of urinary system infections,15 cases of bloodstream infections,12 cases of chest and abdominal infections,and 9 cases of other infections in 126 patients with sepsis;32 cases(25.4%)developed AAD.Logistic multiple regression analysis showed that age≥60 years,lactic acid(Lac)level,albumin(ALB)level,use of carbapenems and enzyme inhibitors,combination of antibiotics,using hormones,and length of hospital stay were risk factors for AAD in sepsis patients(95%CI were 0.847-0.983,0.074-0.527,1.147-2.034,0.624-1.687,2.132-5.220,0.439-0.882,0.411-0.853,0.478-0.848,P<0.05).Conclusion Sepsis patients of department of critical care medicine have a high risk of developing AAD.Age≥60 years old,Lac level,ALB level,use of carbapenems and enzyme inhibitors,combination of antibiotics therapy,using hormones,and length of hospital stay are risk factors for AAD in sepsis patients.
7.Inhibitory effect of adenosine on adaptive antitumor immunity and intervention strategies.
Longsheng WANG ; Wenxin ZHANG ; Jie ZHANG ; Mingming ZHENG ; Xiaohui PAN ; Hongjie GUO ; Ling DING
Journal of Zhejiang University. Medical sciences 2023;52(5):567-577
Tumors in which the microenvironment is characterized by lack of immune cell infiltration are referred as "cold tumors" and typically exhibit low responsiveness to immune therapy. Targeting the factors contributing to "cold tumors" formation and converting them into "hot tumors" is a novel strategy for improving the efficacy of immunotherapy. Adenosine, a hydrolysis product of ATP, accumulates with a significantly higher concentration in the tumor microenvironments compared with normal tissue and exerts inhibitory effects on tumor-specific adaptive immunity. Tumor cells, dendritic cells, macrophages, and T cells express abundant adenosine receptors on their surfaces. The binding of adenosine to these receptors initiates downstream signaling pathways that suppress tumor antigen presentation and immune cell activation, consequently dampening adaptive immune responses against tumors. Adenosine down-regulates the expression of major histocompatibility complex Ⅱ and co-stimulatory factors on dendritic cells and macrophages, thereby inhibiting antigen presentation to T cells. Adenosine also inhibits ligand-receptor binding and transmembrane signaling on T cells, concomitantly suppressing the secretion of anti-tumor cytokines and impairing T cell activation. Furthermore, adenosine hinders effector T cell trafficking to tumor sites and infiltration by inhibiting chemokine secretion and KCa3.1 channels. Additionally, adenosine promotes the secretion of immunosuppressive cytokines, increases immune checkpoint protein expression, and enhances the activity of immunosuppressive cells, collectively curbing cytotoxic T cell-mediated tumor cell killing. Given the immunosuppressive role of adenosine in adaptive antitumor immunity, several inhibitors targeting adenosine generation or adenosine receptor blockade are currently in preclinical or clinical development with the aim of enhancing the effectiveness of immunotherapies. This review provides an overview of the inhibitory effects of adenosine on adaptive antitumor immunity, elucidate the molecular mechanisms involved, and summarizes the latest advances in application of adenosine inhibition strategies for antitumor immunotherapy.
Humans
;
Adenosine/pharmacology*
;
T-Lymphocytes
;
Adaptive Immunity
;
Cytokines
;
Neoplasms/therapy*
;
Tumor Microenvironment
8.Erratum: Author correction to 'Mevalonate improves anti-PD-1/PD-L1 efficacy by stabilizing CD274 mRNA' Acta Pharmaceutica Sinica B 13 (2023) 2585-2600.
Wenxin ZHANG ; Xiaohui PAN ; Yanjun XU ; Hongjie GUO ; Mingming ZHENG ; Xi CHEN ; Honghai WU ; Fengming LUAN ; Qiaojun HE ; Ling DING ; Bo YANG
Acta Pharmaceutica Sinica B 2023;13(10):4337-4337
[This corrects the article DOI: 10.1016/j.apsb.2023.04.002.].
9.The impact of lipids on the cancer-immunity cycle and strategies for modulating lipid metabolism to improve cancer immunotherapy.
Mingming ZHENG ; Wenxin ZHANG ; Xi CHEN ; Hongjie GUO ; Honghai WU ; Yanjun XU ; Qiaojun HE ; Ling DING ; Bo YANG
Acta Pharmaceutica Sinica B 2023;13(4):1488-1497
Lipids have been found to modulate tumor biology, including proliferation, survival, and metastasis. With the new understanding of tumor immune escape that has developed in recent years, the influence of lipids on the cancer-immunity cycle has also been gradually discovered. First, regarding antigen presentation, cholesterol prevents tumor antigens from being identified by antigen presenting cells. Fatty acids reduce the expression of major histocompatibility complex class I and costimulatory factors in dendritic cells, impairing antigen presentation to T cells. Prostaglandin E2 (PGE2) reduce the accumulation of tumor-infiltrating dendritic cells. Regarding T-cell priming and activation, cholesterol destroys the structure of the T-cell receptor and reduces immunodetection. In contrast, cholesterol also promotes T-cell receptor clustering and relative signal transduction. PGE2 represses T-cell proliferation. Finally, regarding T-cell killing of cancer cells, PGE2 and cholesterol weaken granule-dependent cytotoxicity. Moreover, fatty acids, cholesterol, and PGE2 can improve the activity of immunosuppressive cells, increase the expression of immune checkpoints and promote the secretion of immunosuppressive cytokines. Given the regulatory role of lipids in the cancer-immunity cycle, drugs that modulate fatty acids, cholesterol and PGE2 have been envisioned as effective way in restoring antitumor immunity and synergizing with immunotherapy. These strategies have been studied in both preclinical and clinical studies.
10.Mevalonate improves anti-PD-1/PD-L1 efficacy by stabilizing CD274 mRNA.
Wenxin ZHANG ; Xiaohui PAN ; Yanjun XU ; Hongjie GUO ; Mingming ZHENG ; Xi CHEN ; Honghai WU ; Fengming LUAN ; Qiaojun HE ; Ling DING ; Bo YANG
Acta Pharmaceutica Sinica B 2023;13(6):2585-2600
Mevalonate metabolism plays an important role in regulating tumor growth and progression; however, its role in immune evasion and immune checkpoint modulation remains unclear. Here, we found that non-small cell lung cancer (NSCLC) patients with higher plasma mevalonate response better to anti-PD-(L)1 therapy, as indicated by prolonged progression-free survival and overall survival. Plasma mevalonate levels were positively correlated with programmed death ligand-1 (PD-L1) expression in tumor tissues. In NSCLC cell lines and patient-derived cells, supplementation of mevalonate significantly up-regulated the expression of PD-L1, whereas deprivation of mevalonate reduced PD-L1 expression. Mevalonate increased CD274 mRNA level but did not affect CD274 transcription. Further, we confirmed that mevalonate improved CD274 mRNA stability. Mevalonate promoted the affinity of the AU-rich element-binding protein HuR to the 3'-UTR regions of CD274 mRNA and thereby stabilized CD274 mRNA. By in vivo study, we further confirmed that mevalonate addition enhanced the anti-tumor effect of anti-PD-L1, increased the infiltration of CD8+ T cells, and improved cytotoxic function of T cells. Collectively, our findings discovered plasma mevalonate levels positively correlated with the therapeutic efficacy of anti-PD-(L)1 antibody, and provided the evidence that mevalonate supplementation could be an immunosensitizer in NSCLC.

Result Analysis
Print
Save
E-mail