1.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
		                        		
		                        			
		                        			Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
		                        		
		                        		
		                        		
		                        	
2.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
		                        		
		                        			
		                        			Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
		                        		
		                        		
		                        		
		                        	
3.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
		                        		
		                        			
		                        			Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
		                        		
		                        		
		                        		
		                        	
4.Changing resistance profiles of Proteus,Morganella and Providencia in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yunmin XU ; Xiaoxue DONG ; Bin SHAN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Hongyan ZHENG ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):410-417
		                        		
		                        			
		                        			Objective To understand the changing distribution and antimicrobial resistance profiles of Proteus,Morganella and Providencia in hospitals across China from January 1,2015 to December 31,2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods Antimicrobial susceptibility testing was carried out following the unified CHINET protocol.The results were interpreted in accordance with the breakpoints in the 2021 Clinical & Laboratory Standards Institute(CLSI)M100(31 st Edition).Results A total of 32 433 Enterobacterales strains were isolated during the 7-year period,including 24 160 strains of Proteus,6 704 strains of Morganella,and 1 569 strains of Providencia.The overall number of these Enterobacterales isolates increased significantly over the 7-year period.The top 3 specimen source of these strains were urine,lower respiratory tract specimens,and wound secretions.Proteus,Morganella,and Providencia isolates showed lower resistance rates to amikacin,meropenem,cefoxitin,cefepime,cefoperazone-sulbactam,and piperacillin-tazobactam.For most of the antibiotics tested,less than 10%of the Proteus and Morganella strains were resistant,while less than 20%of the Providencia strains were resistant.The prevalence of carbapenem-resistant Enterobacterales(CRE)was 1.4%in Proteus isolates,1.9%in Morganella isolates,and 15.6%in Providencia isolates.Conclusions The overall number of clinical isolates of Proteus,Morganella and Providencia increased significantly in the 7-year period from 2015 to 2021.The prevalence of CRE strains also increased.More attention should be paid to antimicrobial resistance surveillance and rational antibiotic use so as to prevent the emergence and increase of antimicrobial resistance.
		                        		
		                        		
		                        		
		                        	
5.Changing distribution and resistance profiles of Klebsiella strains in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Chuyue ZHUO ; Yingyi GUO ; Chao ZHUO ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):418-426
		                        		
		                        			
		                        			Objective To understand the changing distribution and antimicrobial resistance profiles of Klebsiella strains in 52 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Methods Antimicrobial susceptibility testing was carried out according to the unified CHINET protocol.The susceptibility results were interpreted according to the breakpoints in the Clinical & Laboratory Standards Institute(CLSI)M100 document.Results A total of 241,549 nonduplicate Klebsiella strains were isolated from 2015 to 2021,including Klebsiella pneumoniae(88.0%),Klebsiella aerogenes(5.8%),Klebsiella oxytoca(5.7%),and other Klebsiella species(0.6%).Klebsiella strains were mainly isolated from respiratory tract(48.49±5.32)%.Internal medicine(22.79±3.28)%,surgery(17.98±3.10)%,and ICU(14.03±1.39)%were the top 3 departments where Klebsiella strains were most frequently isolated.K.pneumoniae isolates showed higher resistance rate to most antimicrobial agents compared to other Klebsiella species.Klebsiella isolates maintained low resistance rates to tigecycline and polymyxin B.ESBLs-producing K.pneumoniae and K.oxytoca strains showed higher resistance rates to all the antimicrobial agents tested compared to the corresponding ESBLs-nonproducing strains.The K.pneumoniae and carbapenem-resistant K.pneumoniae(CRKP)strains isolated from ICU patients demonstrated higher resistance rates to majority of the antimicrobial agents tested than the strains isolated from non-ICU patients.The CRKP strains isolated from adult patients had higher resistance rates to most of the antimicrobial agents tested than the corresponding CRKP strains isolated from paediatric patients.Conclusions The prevalence of carbapenem-resistant strains in Klebsiella isolates increased greatly from 2015 to 2021.However,the Klebsiella isolates remained highly susceptible to tigecycline and polymyxin B.Antimicrobial resistance surveillance should still be strengthened for Klebsiella strains.
		                        		
		                        		
		                        		
		                        	
6.Changing resistance profiles of Staphylococcus isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yuling XIAO ; Mei KANG ; Yi XIE ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(5):570-580
		                        		
		                        			
		                        			Objective To investigate the changing distribution and antibiotic resistance profiles of clinical isolates of Staphylococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Staphylococcus according to the unified protocol of CHINET(China Antimicrobial Surveillance Network)using disk diffusion method and commercial automated systems.The CHINET antimicrobial resistance surveillance data from 2015 to 2021 were interpreted according to the 2021 CLSI breakpoints and analyzed using WHONET 5.6.Results During the period from 2015 to 2021,a total of 204,771 nonduplicate strains of Staphylococcus were isolated,including 136,731(66.8%)strains of Staphylococcus aureus and 68,040(33.2%)strains of coagulase-negative Staphylococcus(CNS).The proportions of S.aureus isolates and CNS isolates did not show significant change.S.aureus strains were mainly isolated from respiratory specimens(38.9±5.1)%,wound,pus and secretions(33.6±4.2)%,and blood(11.9±1.5)%.The CNS strains were predominantly isolated from blood(73.6±4.2)%,cerebrospinal fluid(12.1±2.5)%,and pleural effusion and ascites(8.4±2.1)%.S.aureus strains were mainly isolated from the patients in ICU(17.0±7.3)%,outpatient and emergency(11.6±1.7)%,and department of surgery(11.2±0.9)%,whereas CNS strains were primarily isolated from the patients in ICU(32.2±9.7)%,outpatient and emergency(12.8±4.7)%,and department of internal medicine(11.2±1.9)%.The prevalence of methicillin-resistant strains was 32.9%in S.aureus(MRSA)and 74.1%in CNS(MRCNS).Over the 7-year period,the prevalence of MRSA decreased from 42.1%to 29.2%,and the prevalence of MRCNS decreased from 82.1%to 68.2%.MRSA showed higher resistance rates to all the antimicrobial agents tested except trimethoprim-sulfamethoxazole than methicillin-susceptible S.aureus(MSSA).Over the 7-year period,MRSA strains showed decreasing resistance rates to gentamicin,rifampicin,and levofloxacin,MRCNS showed decreasing resistance rates to gentamicin,erythromycin,rifampicin,and trimethoprim-sulfamethoxazole,but increasing resistance rate to levofloxacin.No vancomycin-resistant strains were detected.The prevalence of linezolid-resistant MRCNS increased from 0.2%to 2.3%over the 7-year period.Conclusions Staphylococcus remains the major pathogen among gram-positive bacteria.MRSA and MRCNS were still the principal antibiotic-resistant gram-positive bacteria.No S.aureus isolates were found resistant to vancomycin or linezolid,but linezolid-resistant strains have been detected in MRCNS isolates,which is an issue of concern.
		                        		
		                        		
		                        		
		                        	
7.Therapeutic Effect of Canagliflozin on Nephrotic Syndrome and Its Ultrasonic Evaluation
Wen-juan HONG ; Hong-jun LI ; Jiu-lin ZOU ; Wei HUAN ; Xiao LI ; Jia-mao CHENG ; Hai-yan CHEN
Journal of Sun Yat-sen University(Medical Sciences) 2023;44(1):71-77
		                        		
		                        			
		                        			ObjectiveTo investigate the therapeutic effect of antidiabetic drug canagliflozin (CGLZ) on adriamycin-induced nephrotic syndrome (NS) in rats, and the evaluation of contrast-enhanced ultrasound (CEUS) combined with color Doppler flow imaging (CDFI) during the treatment. MethodsA total of 56 male SD rats were randomly divided into normal group (NG), model group (MG), prednisone (PAT) group (PG), low-dose single CGLZ group (LSCG), high-dose single CGLZ group (HSCG), low-dose CGLZ + PAT group (LUCG) and high-dose CGLZ + PAT group (HUCG), with 8 rats in each group. The NS model in rats was induced by injecting adriamycin twice into the tail vein, and then the NS rats were treated by intragastric administration daily for 6 weeks with reference of PAT. Twenty-four hour urine total protein (24 h-UTP) was assessed one day before the start of oral administration and at the end of 2, 4 and 6 weeks after oral administration, respectively. CDFI and CEUS were performed on the right renal artery at the end of 6 weeks after oral administration, and the blood of abdominal aorta was taken for serological test the next day. ResultsCompared with those detection index of NG rats, the 24-hour UTP of MG rats increased (P<0.01), the serum ALB decreased and TG, TC, LDL increased (P<0.01), and CDFI shows that RRCT was thinner (P<0.01) and the renal artery blood flow indicators RA-PI, RA-RI, RA-S/D all increased (P<0.05), and CEUS image shows that the TIC curve parameters TTP, AT, AUC all increased and DPI decrease in MG rats (P<0.01). After drug treatment, compared with those detection index of MG rats, 24 h-UTP decrease in LSCG after 2 weeks (P<0.01), and decrease significantly in all drug groups after 6 weeks (P<0.01); the serological test results show that the serum ALB in all CGLZ groups increased (P<0.05), TG decrease in LSCG (P<0.01), TC and LDL also decrease in LUCG after 6 weeks (P<0.05); CDFI shows that the RRCT thinning degree in all CGLZ is reduced (P<0.01), and the RA-PI in LSCG, RA-RI in PG, and RA-S/D in PG, LSCG, HSCG and LUCG rats all decreased (P<0.05); CEUS shows that the TTP, AT and AUC of renal TIC curve in drug treatment groups all decreased (P<0.01), and the DPI in PG, HSCG, LUCG and HUCG rats increased (P<0.01). ConclusionsCGLZ has the effect of treating NS, and the small dose is the best. CEUS combined with CDFI can be used to evaluate the renal morphology and hemodynamic changes of NS model rats before and after drug treatment, which is helpful to guide clinical application. 
		                        		
		                        		
		                        		
		                        	
8.Clinical characteristics and microbiological tests analysis of 18 patients with Talaromyces marneffei infection
ZOU Sheng-hua ; FANG Mei-lan ; LIN Zhen-li ; CHEN Xin-chao ; HUANG Ming-xiang ; GUAN Hong-lian ; WANG Xin-hang
China Tropical Medicine 2023;23(2):139-
		                        		
		                        			
		                        			Abstract:Objective To investigate the clinical characteristics and early diagnostic methods of patients with Talaromyces marneffei infection, so as to reduce the mortality of patients. Methods    The clinical characteristics and microbiological analysis data including fungal culture, smear examination and mass spectrometry were collected from 18 patients with Talaromyces marneffei infection in the Department of Respiratory Medicine, Department of Tuberculosis, and Department of Critical Respiratory Medicine in Fuzhou Pulmonary Hospital from January 2017 to December 2021, and descriptive analysis was conducted. Results All the 18 patients were confirmed to be infected with Talaromyces marneffei by conventional culture and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS). The main infection sites of 18 patients with Talaromyces marneffei infection were lungs and lymph nodes, and the patients were accompanied by clinical manifestations such as cough, sputum and fever. The imaging features such as patchy shadows, mediastinal lymph node shadows and nodular shadows were common. Microbiological testing showed a statistically significant difference between smear and culture with a higher positive culture rate (χ2=13.74, P<0.05). The positive rate of blood culture in microbiological test was 60.0% (9/15), the positive rate of bronchial lavage fluid culture was 26.7% (4/15), the positive rate of sputum culture was 5.6% (1/18), one case each of pus, bone marrow, pleural fluid and cerebrospinal fluid was positive for culture and the other cases were negative, one case of sputum and one case of pus were positive for smear and the rest were negative. Colony characteristics showed that the colony morphology was mycelial phase at 25 ℃, producing red pigment, and the branching pattern of the penicillus was seen microscopically as monoverticillate or biverticillate; At 35 ℃, the yeast phase appeared at the initial stage, and then the mycelium phase changed after 5-6 days; the yeast phase was observed at 37 ℃, and yeast-like cells were seen under the microscope. All 18 patients with Talaromyces marneffei infection got better after using antifungal drugs. Compared with non-HIV patients with Talaromyces marneffei infection, leukopenia and anemia were common in HIV patients with Talaromyces marneffei infection, and the differences were statistically significant (P<0.05).  Conclusions    The infection of Talaromyces marneffei can be divided into localized type and disseminated type, which usually invade the lungs, skin, lymph nodes and other places. The main manifestations of patients are fever, cough, phlegm and other atypical symptoms. At present, the diagnosis of Talaromyces marneffei infection is mostly based on the fungal culture test, and the application of MALDI-TOF MS method can effectively shorten the diagnosis time of Talaromycosis marneffei. Clinical characteristics combined with microbiological analysis provide an objective basis for early diagnosis of patients with Talaromyces marneffei infection, and timely use of antifungal therapy can improve the prognosis of patients.
		                        		
		                        		
		                        		
		                        	
9.Establishment of a fast discriminant model with electronic nose for Polygonati Rhizoma mildew based on odor variation.
Shu-Lin YU ; Jian-Ting GONG ; Li LI ; Jia-Li GUAN ; En-Ai ZHAI ; Shao-Qin OUYANG ; Hui-Qin ZOU ; Yong-Hong YAN
China Journal of Chinese Materia Medica 2023;48(7):1833-1839
		                        		
		                        			
		                        			The odor fingerprint of Pollygonati Rhizoma samples with different mildewing degrees was analyzed and the relationship between the odor variation and the mildewing degree was explored. A fast discriminant model was established according to the response intensity of electronic nose. The α-FOX3000 electronic nose was applied to analyze the odor fingerprint of Pollygonati Rhizoma samples with different mildewing degrees and the radar map was used to analyze the main contributors among the volatile organic compounds. The feature data were processed and analyzed by partial least squares discriminant analysis(PLS-DA), K-nearest neighbor(KNN), sequential minimal optimization(SMO), random forest(RF) and naive Bayes(NB), respectively. According to the radar map of the electronic nose, the response values of three sensors, namely T70/2, T30/1, and P10/2, increased with the mildewing, indicating that the Pollygonati Rhizoma produced alkanes and aromatic compounds after the mildewing. According to PLS-DA model, Pollygonati Rhizoma samples of three mildewing degrees could be well distinguished in three areas. Afterwards, the variable importance analysis of the sensors was carried out and then five sensors that contributed a lot to the classification were screened out: T70/2, T30/1, PA/2, P10/1 and P40/1. The classification accuracy of all the four models(KNN, SMO, RF, and NB) was above 90%, and KNN was most accurate(accuracy: 97.2%). Different volatile organic compounds were produced after the mildewing of Pollygonati Rhizoma, and they could be detected by electronic nose, which laid a foundation for the establishment of a rapid discrimination model for mildewed Pollygonati Rhizoma. This paper shed lights on further research on change pattern and quick detection of volatile organic compounds in moldy Chinese herbal medicines.
		                        		
		                        		
		                        		
		                        			Electronic Nose
		                        			;
		                        		
		                        			Odorants/analysis*
		                        			;
		                        		
		                        			Volatile Organic Compounds/analysis*
		                        			;
		                        		
		                        			Bayes Theorem
		                        			;
		                        		
		                        			Drugs, Chinese Herbal/analysis*
		                        			;
		                        		
		                        			Discriminant Analysis
		                        			
		                        		
		                        	
10.A quantitative study of airway ultrasound in predicting difficult laryngoscopy: A prospective study.
Lin NING ; Xing ZHU ; Hong-Chao LI ; Shi-Jie ZHOU ; Qi-Wei ZHANG ; Hong-Yu ZOU ; Qing-Xiang MAO ; Hong YAN
Chinese Journal of Traumatology 2023;26(6):351-356
		                        		
		                        			PURPOSE:
		                        			As common clinical screening tests cannot effectively predict a difficult airway, and unanticipated difficult laryngoscopy remains a challenge for physicians. We herein used ultrasound to develop some point-of-care predictors for difficult laryngoscopy.
		                        		
		                        			METHODS:
		                        			This prospective observational study included 502 patients who underwent laryngoscopy and a detailed sonographic assessment. Patients under 18 years old, or with maxillofacial deformities or fractures, limited mouth opening, limited neck movement or history of neck surgery were excluded from the study. Laryngoscopic views of all patients were scored and grouping using the modified Cormack-Lehane (CL) scoring system. The measurements acquired comprised tongue width, the longitudinal cross-sectional area of the tongue, tongue volume, the mandible-hyoid bone distance, the hyoid bone-glottis distance, the mandible-hyoid bone-glottis angle, the skin-thyrohyoid membrane distance, the glottis-superior edge of the thyroid cartilage distance (DGTC), the skin-hyoid bone distance, and the epiglottis midway-skin distance. ANOVA and Chi-square were used to compare differences between groups. Logistic regression was used to identify risk factors for difficult laryngoscopy and it was visualized by receiver operating characteristic curves and nomogram. R version 3.6.3 and SPSS version 26.0 were used for statistical analyses.
		                        		
		                        			RESULTS:
		                        			Difficult laryngoscopy was indicated in 49 patients (CL grade Ⅲ - Ⅳ) and easy laryngoscopy in 453 patients (CL grade Ⅰ - Ⅱ). The ultrasound-measured mandible-hyoid bone-glottis angle and DGTC significantly differed between the 2 groups (p < 0.001). Difficult laryngoscopy was predicted by an area under the curve (AUC) of 0.930 with a threshold mandible-hyoid bone-glottis angle of 125.5° and by an AUC of 0.722 with a threshold DGTC of 1.22 cm. The longitudinal cross-sectional area of the tongue, tongue width, tongue volume, the mandible-hyoid distance, and the hyoid-glottis distance did not significantly differ between the groups.
		                        		
		                        			CONCLUSION
		                        			Difficult laryngoscopy may be anticipated in patients in whom the mandible-hyoid bone-glottis angle is smaller than 125.5° or DGTC is larger than 1.22 cm.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Adolescent
		                        			;
		                        		
		                        			Laryngoscopy
		                        			;
		                        		
		                        			Prospective Studies
		                        			;
		                        		
		                        			Tongue/diagnostic imaging*
		                        			;
		                        		
		                        			Respiratory System
		                        			;
		                        		
		                        			Ultrasonography
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail