1.Application of Recombinant Collagen in Biomedicine
Huan HU ; Hong ZHANG ; Jian WANG ; Li-Wen WANG ; Qian LIU ; Ning-Wen CHENG ; Xin-Yue ZHANG ; Yun-Lan LI
Progress in Biochemistry and Biophysics 2025;52(2):395-416
Collagen is a major structural protein in the matrix of animal cells and the most widely distributed and abundant functional protein in mammals. Collagen’s good biocompatibility, biodegradability and biological activity make it a very valuable biomaterial. According to the source of collagen, it can be broadly categorized into two types: one is animal collagen; the other is recombinant collagen. Animal collagen is mainly extracted and purified from animal connective tissues by chemical methods, such as acid, alkali and enzyme methods, etc. Recombinant collagen refers to collagen produced by gene splicing technology, where the amino acid sequence is first designed and improved according to one’s own needs, and the gene sequence of improved recombinant collagen is highly consistent with that of human beings, and then the designed gene sequence is cloned into the appropriate vector, and then transferred to the appropriate expression vector. The designed gene sequence is cloned into a suitable vector, and then transferred to a suitable expression system for full expression, and finally the target protein is obtained by extraction and purification technology. Recombinant collagen has excellent histocompatibility and water solubility, can be directly absorbed by the human body and participate in the construction of collagen, remodeling of the extracellular matrix, cell growth, wound healing and site filling, etc., which has demonstrated significant effects, and has become the focus of the development of modern biomedical materials. This paper firstly elaborates the structure, type, and tissue distribution of human collagen, as well as the associated genetic diseases of different types of collagen, then introduces the specific process of producing animal source collagen and recombinant collagen, explains the advantages of recombinant collagen production method, and then introduces the various systems of expressing recombinant collagen, as well as their advantages and disadvantages, and finally briefly introduces the application of animal collagen, focusing on the use of animal collagen in the development of biopharmaceutical materials. In terms of application, it focuses on the use of animal disease models exploring the application effects of recombinant collagen in wound hemostasis, wound repair, corneal therapy, female pelvic floor dysfunction (FPFD), vaginal atrophy (VA) and vaginal dryness, thin endometritis (TE), chronic endometritis (CE), bone tissue regeneration in vivo, cardiovascular diseases, breast cancer (BC) and anti-aging. The mechanism of action of recombinant collagen in the treatment of FPFD and CE was introduced, and the clinical application and curative effect of recombinant collagen in skin burn, skin wound, dermatitis, acne and menopausal urogenital syndrome (GSM) were summarized. From the exploratory studies and clinical applications, it is evident that recombinant collagen has demonstrated surprising effects in the treatment of all types of diseases, such as reducing inflammation, promoting cell proliferation, migration and adhesion, increasing collagen deposition, and remodeling the extracellular matrix. At the end of the review, the challenges faced by recombinant collagen are summarized: to develop new recombinant collagen types and dosage forms, to explore the mechanism of action of recombinant collagen, and to provide an outlook for the future development and application of recombinant collagen.
2.Application of Functionalized Liposomes in The Delivery of Natural Products
Cheng-Yun WANG ; Xin-Yue LAN ; Jia-Xuan GU ; Xin-Ru GAO ; Long-Jiao ZHU ; Jun LI ; Bing FANG ; Wen-Tao XU ; Hong-Tao TIAN
Progress in Biochemistry and Biophysics 2024;51(11):2947-2959
Plant natural products have a wide range of pharmacological properties, not only can they be used as plant dietary supplements to meet the nutritional needs of the human body in the accelerated pace of life, but also occupy an important position in the research and development of therapeutic drugs for the treatment of tumors, inflammation and other diseases, and have been widely accepted by the public due to their good safety. However, despite the above advantages of plant natural products, limiting factors such as low solubility, poor stability, lack of targeting, high toxicity and side effects, and unacceptable odor have greatly impeded their conversion to clinical applications. Therefore, the development of new avenues for the application of new natural products has become an urgent problem to be solved at present. In recent years, with the continuous development of research, various strategies have been developed to improve the bioavailability of natural products. Among them, nanocarrier delivery system is one of the most attractive strategies at present. In past studies, a large number of nanomaterials (organic, inorganic, etc.) have been developed to encapsulate plant-derived natural products for their efficient delivery to specific organs and cells. Up to now, nanotechnology has not only been limited to pharmaceutical applications, but is also competing in the fields of nanofood processing technology and nanoemulsions. Among the various nanocarriers, liposomes are the largest nanocarriers with the largest market share at present. Liposomes are bilayer nanovesicles synthesized from amphiphilic substances, which have advantages such as high drug loading capacity and stability. Attractively, the flexible surface of liposomes can be modified with various functional elements. Functionalized modification of liposomes with different functional elements such as antibodies, nucleic acids, peptides, and stimuli-responsive moieties can bring out the excellent drug delivery function of liposomes to a greater extent. For example, the modification of functional elements with targeting function such as nucleic acids and antibodies on the surface of liposomes can deliver natural products to the target location and improve the bioavailability of drugs; the modification of stimulus-responsive groups such as photosensitizers, magnetic nanoparticles, pH-responsive groups, and temperature sensitizers on the surface of liposomes can achieve controlled release of drugs, localized targeting, and synergistic thermotherapy. In addition to the above properties, by using functionalized liposomes to encapsulate natural products with irritating properties can also effectively mask the irritating properties of natural products, improve public acceptance, and increase the possibility of application of irritating natural products. There are various strategies for modifying liposomes with functional elements, and the properties of functionalized liposomes constructed by different construction strategies differ. The commonly used construction strategies for functionalized liposomes include covalent modification and non-covalent modification. These two types of construction strategies have their own advantages and disadvantages. Covalent modification has better stability than non-covalent modification, but its operation is cumbersome. With the above background, this review focuses on the three typical problems faced by plant natural products at present, and summarizes the specific applications of functionalized liposomes in them. In addition, this paper summarizes the construction strategies for building different types of functionalized liposomes. Finally, this paper will also review the opportunities and challenges faced by functionalized liposomes to enter clinical therapy, and explore the opportunities to overcome these problems, with a view to better realizing the precise control of plant nanomedicines, and providing ideas and inspirations for researchers in related fields as well as relevant industrial staff.
3.Clinical Efficacy and Safety of Flumatinib in the Treatment of Patients with Newly Diagnosed Chronic Myeloid Leukemia in Chronic Phase
Qin LI ; Li JING ; Peng-Qiang WU ; Li-Ying HAN ; Hong-Yun XING ; Chun-Lan HUANG
Journal of Experimental Hematology 2024;32(1):14-19
Objective:To explore the clinical efficacy and safety of flumatinib mesylate produced in China in patients with newly diagnosed chronic myeloid leukemia in chronic phase(CML-CP).Methods:32 newly diagnosed CML-CP patients admitted to the Hematology Department of the Affiliated Hospital of Southwest Medical University from March 1,2020 to March 31,2022,who had never received any tyrosine kinase inhibitor(TKI)were included in the study.The patients were treated by flumatinib mesylate 600mg once daily.The hematologic,cytogenetic and molecular responses were assessed at 3-,6-and 12-month,and adverse effects of the drug were evaluated.Results:31 patients were treated with flumatinib for≥3 months,of which 24 patients were treated for ≥ 6 months and 14 patients were treated for ≥ 12 months.At 3rd month of treatment,30 out of 31 patients achieved complete hematologic response(CHR);24 patients underwent cytogenetic testing and 22 cases achieved major cytogenetic response(MCyR),of which 21 cases achieved complete cytogenetic response(CCyR);Among 25 patients who underwent molecular testing,22 patients had BCR-ABLIS ≤ 10%,including 10 patients with BCR-ABLIS ≤ 0.1%,and 6 patients with BCR-ABLIS≤0.01%.At 6th month of treatment,23 out of 24 patients achieved CHR;17 patients underwent cytogenetic testing and all achieved CCyR;Among 23 patients who underwent molecular testing,20 patients had BCR-ABLIS ≤1%,including 16 patients with BCR-ABL1S≤0.1%and 12 patients with BCR-ABLIS ≤ 0.01%.At 12nd month of treatment,all 14 patients achieved CHR and CCyR;Among them,10 patients had BCR-ABLIS ≤ 0.1%,including 9 patients with BCR-ABLIS ≤ 0.01%.The grade Ⅲ/Ⅳ leukopenia,thrombocytopenia and anemia rates in the patients were 13.3%,20.0%and 3.3%,respectively.One patient stopped flumatinib therapy due to severe and persistent hematologic toxicity.The major non-hematologic adverse events were abnormal liver function(20%),diarrhea(10%),bone/joint pain(10%),muscle spasm(10%),rash(6.7%),acute kidney injury(6.7%)and nausea(3.3%),most of which were grade Ⅰ-Ⅱ.No patient experienced grade Ⅳnon-hematologic adverse events.No drug toxicity-related death occurred.Conclusion:Flumatinib mesglate,as the first-line treatment for newly diagnosed CML-CP,can enable the patients to achieve early and deep molecular and cytogenetic responses,and shows good safety.
4.Distribution Characteristics of Rh Phenotype and Feasibility of Compatible Blood Transfusion in Pregnant and Postpartum Women
Gui-Lin YANG ; Tao ZHANG ; Chun-Li LI ; Hong-Peng ZHANG ; Ying-Ying WU ; Sheng-Lan LI ; Kuai WAN ; Yun-Ping YANG
Journal of Experimental Hematology 2024;32(3):868-874
Objective:To analyze the distribution characteristics of Rh phenotype in pregnant and postpartum women in Chongqing area,and to explore the clinical significance of Rh phenotype in pregnant and postpartum women and the feasibility of Rh phenotype compatible blood transfusion.Methods:The ABO blood group and Rh phenotype of 65 161 pregnant and postpartum women were detected by microcolumn gel method,and 48 122 males in the same period were taken as controls.The data were analyzed by Chi-square test.Results:There were 112 870 cases(99.64%)of RhD+in 113 283 samples.In RhD+cases,CCDee(48.39%)and CcDEe(32.88%)were the main phenotypes.The first case of D--phenotype in Chongqing area was detected.413 cases(0.36%)of RhD-were detected,with ccdee(52.78%)and Ccdee(33.41%)as the main phenotypes.Compared with RhD-group,RhD+group showed statistically significant difference in Rh phenotype distribution(P<0.01).Among 65 161 maternal samples,the positive rate of 5 antigens of Rh blood group from high to low was D>e>C>c>E,and there was no significant difference compared with male samples(P>0.05).There was no significant difference in the distribution of Rh phenotype between males and pregnant/postpartum women,as well as between pregnant/postpartum women with different ABO blood groups(P>0.05).In pregnant and postpartum women,there was no significant difference in distribution of Rh phenotype among the normal pregnancy population,the population with adverse pregnancy history,the population using human assisted reproductive technology(ART)and the population with infertility(P>0.05).There was no significant difference in the distribution of Rh phenotype between the 4 populations mentioned above and the inpatients in the local general Grade A hospitals and the blood donors(P>0.05).In RhD positive pregnant and postpartum women,the probability of finding compatible blood for CcDEe phenotype was 100%,the probability of finding compatible blood for CCDee,CcDee and CCDEe phenotypes was 45%-60%,the probability of finding compatible blood for ccDEE,ccDEe and CcDEE phenotypes was 5%-10%,and the probability of finding compatible blood for other phenotypes was lower than 0.5%.The supply of blood with CCDee and ccDEE phenotypes can meet the compatible transfusions requirements of 7 Rh phenotypes in more than 99%of patients.Conclusion:Rh phenotype detection should be carried out for pregnant and postpartum women,and it is feasible to carry out Rh phenotype-matched or compatible blood transfusion for pregnant and postpartum women who need blood transfusion.
5.Platelet-rich plasma protects hippocampal neurons and memory functions in a rat model of vascular dementia
Ji-Hyun MOON ; Ah La CHOI ; Hyeon-Jeong NOH ; Jae Hwang SONG ; Geum-Lan HONG ; Nam Seob LEE ; Young-Gil JEONG ; Seung Yun HAN
Anatomy & Cell Biology 2024;57(4):559-569
Platelet-rich plasma (PRP) is a promising biomaterial rich in bioactive growth factors, offering potential as a therapeutic agent for various diseases. However, its effectiveness in central nervous system disorders like vascular dementia (VaD) remains underexplored. This study investigated the potential of PRP to mitigate VaD progression in vivo. A rat model of VaD was established via bilateral common carotid artery occlusion and hypovolemia operation. Rats were randomly assigned to receive either PRP or platelet-poor plasma (PPP)—the latter being a byproduct of PRP preparation and used as a reference standard—resulting in the groups designated as ‘operated group (OP)+PRP’ and ‘OP+PPP’, respectively. PRP or PPP (500 μl) was administered intraperitoneally on the day of the operation and postoperative days 2, 4, 6, and 8. Cognitive function was assessed using the Y-maze, Barnes maze, and passive avoidance tests. On postoperative day 8, hippocampal samples were subjected to histological and semi-quantitative analyses. OP exhibited significant memory decline compared to controls, while the ‘OP+PRP’ group showed notable improvement. Histological analysis revealed increased neuronal loss and neuroinflammation in OP hippocampi, mitigated in ‘OP+PRP’. Semi-quantitative analysis showed decreased expression of brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin receptor kinase B (TrkB) in OP, restored in ‘OP+PPP’ and further in ‘OP+PRP’. These results highlight PRP’s protective effects against VaD-induced hippocampal damage and cognitive impairment, partially attributed to BDNF/TrkB pathway upregulation.
6.Platelet-rich plasma protects hippocampal neurons and memory functions in a rat model of vascular dementia
Ji-Hyun MOON ; Ah La CHOI ; Hyeon-Jeong NOH ; Jae Hwang SONG ; Geum-Lan HONG ; Nam Seob LEE ; Young-Gil JEONG ; Seung Yun HAN
Anatomy & Cell Biology 2024;57(4):559-569
Platelet-rich plasma (PRP) is a promising biomaterial rich in bioactive growth factors, offering potential as a therapeutic agent for various diseases. However, its effectiveness in central nervous system disorders like vascular dementia (VaD) remains underexplored. This study investigated the potential of PRP to mitigate VaD progression in vivo. A rat model of VaD was established via bilateral common carotid artery occlusion and hypovolemia operation. Rats were randomly assigned to receive either PRP or platelet-poor plasma (PPP)—the latter being a byproduct of PRP preparation and used as a reference standard—resulting in the groups designated as ‘operated group (OP)+PRP’ and ‘OP+PPP’, respectively. PRP or PPP (500 μl) was administered intraperitoneally on the day of the operation and postoperative days 2, 4, 6, and 8. Cognitive function was assessed using the Y-maze, Barnes maze, and passive avoidance tests. On postoperative day 8, hippocampal samples were subjected to histological and semi-quantitative analyses. OP exhibited significant memory decline compared to controls, while the ‘OP+PRP’ group showed notable improvement. Histological analysis revealed increased neuronal loss and neuroinflammation in OP hippocampi, mitigated in ‘OP+PRP’. Semi-quantitative analysis showed decreased expression of brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin receptor kinase B (TrkB) in OP, restored in ‘OP+PPP’ and further in ‘OP+PRP’. These results highlight PRP’s protective effects against VaD-induced hippocampal damage and cognitive impairment, partially attributed to BDNF/TrkB pathway upregulation.
7.Platelet-rich plasma protects hippocampal neurons and memory functions in a rat model of vascular dementia
Ji-Hyun MOON ; Ah La CHOI ; Hyeon-Jeong NOH ; Jae Hwang SONG ; Geum-Lan HONG ; Nam Seob LEE ; Young-Gil JEONG ; Seung Yun HAN
Anatomy & Cell Biology 2024;57(4):559-569
Platelet-rich plasma (PRP) is a promising biomaterial rich in bioactive growth factors, offering potential as a therapeutic agent for various diseases. However, its effectiveness in central nervous system disorders like vascular dementia (VaD) remains underexplored. This study investigated the potential of PRP to mitigate VaD progression in vivo. A rat model of VaD was established via bilateral common carotid artery occlusion and hypovolemia operation. Rats were randomly assigned to receive either PRP or platelet-poor plasma (PPP)—the latter being a byproduct of PRP preparation and used as a reference standard—resulting in the groups designated as ‘operated group (OP)+PRP’ and ‘OP+PPP’, respectively. PRP or PPP (500 μl) was administered intraperitoneally on the day of the operation and postoperative days 2, 4, 6, and 8. Cognitive function was assessed using the Y-maze, Barnes maze, and passive avoidance tests. On postoperative day 8, hippocampal samples were subjected to histological and semi-quantitative analyses. OP exhibited significant memory decline compared to controls, while the ‘OP+PRP’ group showed notable improvement. Histological analysis revealed increased neuronal loss and neuroinflammation in OP hippocampi, mitigated in ‘OP+PRP’. Semi-quantitative analysis showed decreased expression of brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin receptor kinase B (TrkB) in OP, restored in ‘OP+PPP’ and further in ‘OP+PRP’. These results highlight PRP’s protective effects against VaD-induced hippocampal damage and cognitive impairment, partially attributed to BDNF/TrkB pathway upregulation.
8.Platelet-rich plasma protects hippocampal neurons and memory functions in a rat model of vascular dementia
Ji-Hyun MOON ; Ah La CHOI ; Hyeon-Jeong NOH ; Jae Hwang SONG ; Geum-Lan HONG ; Nam Seob LEE ; Young-Gil JEONG ; Seung Yun HAN
Anatomy & Cell Biology 2024;57(4):559-569
Platelet-rich plasma (PRP) is a promising biomaterial rich in bioactive growth factors, offering potential as a therapeutic agent for various diseases. However, its effectiveness in central nervous system disorders like vascular dementia (VaD) remains underexplored. This study investigated the potential of PRP to mitigate VaD progression in vivo. A rat model of VaD was established via bilateral common carotid artery occlusion and hypovolemia operation. Rats were randomly assigned to receive either PRP or platelet-poor plasma (PPP)—the latter being a byproduct of PRP preparation and used as a reference standard—resulting in the groups designated as ‘operated group (OP)+PRP’ and ‘OP+PPP’, respectively. PRP or PPP (500 μl) was administered intraperitoneally on the day of the operation and postoperative days 2, 4, 6, and 8. Cognitive function was assessed using the Y-maze, Barnes maze, and passive avoidance tests. On postoperative day 8, hippocampal samples were subjected to histological and semi-quantitative analyses. OP exhibited significant memory decline compared to controls, while the ‘OP+PRP’ group showed notable improvement. Histological analysis revealed increased neuronal loss and neuroinflammation in OP hippocampi, mitigated in ‘OP+PRP’. Semi-quantitative analysis showed decreased expression of brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin receptor kinase B (TrkB) in OP, restored in ‘OP+PPP’ and further in ‘OP+PRP’. These results highlight PRP’s protective effects against VaD-induced hippocampal damage and cognitive impairment, partially attributed to BDNF/TrkB pathway upregulation.
9.Platelet-rich plasma protects hippocampal neurons and memory functions in a rat model of vascular dementia
Ji-Hyun MOON ; Ah La CHOI ; Hyeon-Jeong NOH ; Jae Hwang SONG ; Geum-Lan HONG ; Nam Seob LEE ; Young-Gil JEONG ; Seung Yun HAN
Anatomy & Cell Biology 2024;57(4):559-569
Platelet-rich plasma (PRP) is a promising biomaterial rich in bioactive growth factors, offering potential as a therapeutic agent for various diseases. However, its effectiveness in central nervous system disorders like vascular dementia (VaD) remains underexplored. This study investigated the potential of PRP to mitigate VaD progression in vivo. A rat model of VaD was established via bilateral common carotid artery occlusion and hypovolemia operation. Rats were randomly assigned to receive either PRP or platelet-poor plasma (PPP)—the latter being a byproduct of PRP preparation and used as a reference standard—resulting in the groups designated as ‘operated group (OP)+PRP’ and ‘OP+PPP’, respectively. PRP or PPP (500 μl) was administered intraperitoneally on the day of the operation and postoperative days 2, 4, 6, and 8. Cognitive function was assessed using the Y-maze, Barnes maze, and passive avoidance tests. On postoperative day 8, hippocampal samples were subjected to histological and semi-quantitative analyses. OP exhibited significant memory decline compared to controls, while the ‘OP+PRP’ group showed notable improvement. Histological analysis revealed increased neuronal loss and neuroinflammation in OP hippocampi, mitigated in ‘OP+PRP’. Semi-quantitative analysis showed decreased expression of brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin receptor kinase B (TrkB) in OP, restored in ‘OP+PPP’ and further in ‘OP+PRP’. These results highlight PRP’s protective effects against VaD-induced hippocampal damage and cognitive impairment, partially attributed to BDNF/TrkB pathway upregulation.
10. Expression, purification and functional verification of recombinant human α-galactosidase A in suspension CHO-S
Mu-Lan DENG ; Hong-Yu ZHOU ; Ke-Xin ZHENG ; Zhao-Yang LI ; Wan-Yi GUO ; Yan-Ping WANG ; Zhi-Cheng LIANG ; Fang-Hong LI ; Yun-Ping MU ; Zi-Jian ZHAO
Chinese Pharmacological Bulletin 2023;39(4):774-781
Aim To express and purify rhα-Gal A with a 6 X His tag via using a serum-free expression system in high-density suspension culture of Chinese hamster ovary cells ( CHO-S) , and to verify the scavenging effect of rhα-Gal A on globular trisaccharide ceramide (Gb3 or GL3) . Methods The construction of recombinant protein expression vector, pcDNA4-GLA, was achieved by fusing the human α-galactosidase cDNA, gla, with 6 X His tag and artificial DNA synthesis. The expression plasmid was transfected into the suspended CHO-S to express rhα-Gal A and then purified. Following this procedure, we determined rhα-Gal A's expression, the enzymatic activity, and the glycosylation of the recombinant enzyme. Co-incubation with cultured cells was performed to examine whether rhα-Gal A could be taken up into the cells and effectively remove Gb3 substrates. Results rhα-Gal A was successfully expressed and purified after transiently transfecting pcDNA4-GLA into the suspended CHO-S, and the yield was up to (100 ±20. 6) mg • L

Result Analysis
Print
Save
E-mail