1.Pharmacoeconomic evaluation of finerenone combined with standard treatment regimen in the treatment of diabetic nephropathy
Hai LIANG ; Runan XIA ; Panpan DI ; Mengmeng ZHAO ; Pengcheng ZHANG ; Yashen HOU ; Hong ZHANG ; Wei WU ; Miao YANG
China Pharmacy 2025;36(1):86-90
OBJECTIVE To evaluate the cost-effectiveness of finerenone combined with standard treatment regimen in the treatment of diabetic nephropathy (DN). METHODS From the perspective of healthcare service providers, a Markov model was established to simulate the dynamic changes of each stage in DN patients who received finerenone combined with the standard treatment regimen or the standard treatment regimen alone based on the phase Ⅲ clinical trial study of finerenone for DN. Markov model was used to perform the cost-effectiveness of long-term effects and the costs of the two therapies with a simulation cycle of 4 months, a simulation period of 15 years and an annual discount rate of 5%. At the same time, one-way sensitivity analysis and probability sensitivity analysis were performed, and the stability of the results was validated. RESULTS Accumulative cost of the standard treatment regimen was 579 329.54 yuan, and the accumulative utility was 8.052 4 quality-adjusted life year (QALYs); the accumulative cost of finerenone combined with the standard treatment regimen was 332 520.61 yuan, and the accumulative utility was 8.187 4 QALYs. Finerenone combined with the standard treatment regimen was more cost-effective. The results of one-way sensitivity analysis showed that dialysis status utility value, DN stage 3 utility value and DN stage 4 utility value had a great influence on the incremental cost-effectiveness ratio, but did not affect the robustness of the model. The results of probability sensitivity analysis showed that finerenone combined with the standard treatment regimen was more cost-effective with 100% probability. CONCLUSIONS For DN patients, finerenone combined with the standard treatment regimen is more cost-effective as an absolute advantage option.
2.The Mechanisms of Quercetin in Improving Alzheimer’s Disease
Yu-Meng ZHANG ; Yu-Shan TIAN ; Jie LI ; Wen-Jun MU ; Chang-Feng YIN ; Huan CHEN ; Hong-Wei HOU
Progress in Biochemistry and Biophysics 2025;52(2):334-347
Alzheimer’s disease (AD) is a prevalent neurodegenerative condition characterized by progressive cognitive decline and memory loss. As the incidence of AD continues to rise annually, researchers have shown keen interest in the active components found in natural plants and their neuroprotective effects against AD. Quercetin, a flavonol widely present in fruits and vegetables, has multiple biological effects including anticancer, anti-inflammatory, and antioxidant. Oxidative stress plays a central role in the pathogenesis of AD, and the antioxidant properties of quercetin are essential for its neuroprotective function. Quercetin can modulate multiple signaling pathways related to AD, such as Nrf2-ARE, JNK, p38 MAPK, PON2, PI3K/Akt, and PKC, all of which are closely related to oxidative stress. Furthermore, quercetin is capable of inhibiting the aggregation of β‑amyloid protein (Aβ) and the phosphorylation of tau protein, as well as the activity of β‑secretase 1 and acetylcholinesterase, thus slowing down the progression of the disease.The review also provides insights into the pharmacokinetic properties of quercetin, including its absorption, metabolism, and excretion, as well as its bioavailability challenges and clinical applications. To improve the bioavailability and enhance the targeting of quercetin, the potential of quercetin nanomedicine delivery systems in the treatment of AD is also discussed. In summary, the multifaceted mechanisms of quercetin against AD provide a new perspective for drug development. However, translating these findings into clinical practice requires overcoming current limitations and ongoing research. In this way, its therapeutic potential in the treatment of AD can be fully utilized.
3.The Application of Spatial Resolved Metabolomics in Neurodegenerative Diseases
Lu-Tao XU ; Qian LI ; Shu-Lei HAN ; Huan CHEN ; Hong-Wei HOU ; Qing-Yuan HU
Progress in Biochemistry and Biophysics 2025;52(9):2346-2359
The pathogenesis of neurodegenerative diseases (NDDs) is fundamentally linked to complex and profound alterations in metabolic networks within the brain, which exhibit marked spatial heterogeneity. While conventional bulk metabolomics is powerful for detecting global metabolic shifts, it inherently lacks spatial resolution. This methodological limitation hampers the ability to interrogate critical metabolic dysregulation within discrete anatomical brain regions and specific cellular microenvironments, thereby constraining a deeper understanding of the core pathological mechanisms that initiate and drive NDDs. To address this critical gap, spatial metabolomics, with mass spectrometry imaging (MSI) at its core, has emerged as a transformative approach. It uniquely overcomes the limitations of bulk methods by enabling high-resolution, simultaneous detection and precise localization of hundreds to thousands of endogenous molecules—including primary metabolites, complex lipids, neurotransmitters, neuropeptides, and essential metal ions—directly in situ from tissue sections. This powerful capability offers an unprecedented spatial perspective for investigating the intricate and heterogeneous chemical landscape of NDD pathology, opening new avenues for discovery. Accordingly, this review provides a comprehensive overview of the field, beginning with a discussion of the technical features, optimal application scenarios, and current limitations of major MSI platforms. These include the widely adopted matrix-assisted laser desorption/ionization (MALDI)-MSI, the ultra-high-resolution technique of secondary ion mass spectrometry (SIMS)-MSI, and the ambient ionization method of desorption electrospray ionization (DESI)-MSI, along with other emerging technologies. We then highlight the pivotal applications of spatial metabolomics in NDD research, particularly its role in elucidating the profound chemical heterogeneity within distinct pathological microenvironments. These applications include mapping unique molecular signatures around amyloid β‑protein (Aβ) plaques, uncovering the metabolic consequences of neurofibrillary tangles composed of hyperphosphorylated tau protein, and characterizing the lipid and metabolite composition of Lewy bodies. Moreover, we examine how spatial metabolomics contributes to constructing detailed metabolic vulnerability maps across the brain, shedding light on the biochemical factors that render certain neuronal populations and anatomical regions selectively susceptible to degeneration while others remain resilient. Looking beyond current applications, we explore the immense potential of integrating spatial metabolomics with other advanced research methodologies. This includes its combination with three-dimensional brain organoid models to recapitulate disease-relevant metabolic processes, its linkage with multi-organ axis studies to investigate how systemic metabolic health influences neurodegeneration, and its convergence with single-cell and subcellular analyses to achieve unprecedented molecular resolution. In conclusion, this review not only summarizes the current state and critical role of spatial metabolomics in NDD research but also offers a forward-looking perspective on its transformative potential. We envision its continued impact in advancing our fundamental understanding of NDDs and accelerating translation into clinical practice—from the discovery of novel biomarkers for early diagnosis to the development of high-throughput drug screening platforms and the realization of precision medicine for individuals affected by these devastating disorders.
4.Mechanism of Fucoidan Phlorofucofuroeckol A on Inhibit the Proliferation and Invasion of Colorectal Cancer Cells by Down-regulating TGF-β1/Smads Signaling Pathway
Hong LI ; Wei DONG ; Jie HOU ; De HE
Herald of Medicine 2024;43(4):495-501
Objective To investigate the effect of phlorofucofuroeckol A(PFFE-A)on the proliferation and invasion of colorectal carcinoma cells and its regulation of transforming growth factor-β1(TGF-β1)and mothers against decapentaplegic hom-olog 2/3(Smad2/3)signaling pathway.Methods The cells were processed as follows:the cells were intervened with low,medium and high doses of 50,100,and 150 μmol·L-1 of PFFE-A,respectively and cells in the normal control group were also established.5-Ethynyl-2'-deoxyuridine(EdU)staining was used to detect the cell proliferation.The transwell chamber was used to detect the invasion ability.A xenograft colon cancer nude mice model was used to detect the growth and metastasis ability of the cells in vivo.Real-time quantitative polymerase chain reaction(RT-qPCR)was used to detect the expression of epithelial-to-mes-enchymal transition(EMT)related genes.Western blotting was used to detect the expression levels of TGF-β1 and p-Smad2/3 in cells.Results Compared with normal control group,the proliferation rate,the number of invaded cells,the tumor mass,the pro-portion of tumor metastasis,the expression of N-cadherin mRNA,the expression of TGF-β1 and p-Smad2/3 were significantly de-creased(P<0.05),and the mRNA expression of E-cadherin was significantly increased(P<0.05).All were presented with a sig-nificant dose-dependent(P<0.05).Conclusion PFFE-A could inhibit the EMT process of tumor cells,inhibit the prolifera-tion and invasion of HT29 cells in vitro,and down-regulate the growth and metastasis of HT29 cells in vivo,which may be achieved by down-regulating TGF-β1/Smad2/3 signaling pathway.
5.Mechanism of Cigarette Smoke-induced Injury to Alveolar Epithelial Cells
Jian-Lu TIAN ; Hong-Juan WANG ; Huan CHEN ; Hong-Wei HOU ; Qing-Yuan HU
Progress in Biochemistry and Biophysics 2024;51(9):2144-2155
Smoking is the leading preventable risk factor for disease and death worldwide. Tobacco and its smoke contain a complex mix of over 9 500 chemical substances, including oxidative gases, heavy metals, and 83 known carcinogens. Long-term smoking is a significant risk factor for respiratory diseases such as acute lung injury, emphysema, and pulmonary fibrosis. Damage to alveolar epithelial cells (AECs) is a common pathological feature in these smoking-related lung diseases. AECs, which line the surface of the alveoli, play a crucial role in preventing overexpansion or collapse, secreting cell factors and surfactants, containing abundant mitochondria, and being essential for lung tissue maturation, gas exchange, metabolism, and repair after damage. Damage to these cells can lead to pulmonary edema and alveolar collapse. Cigarette smoke (CS) can disrupt alveolar epithelial cell function through various pathways, resulting in cell death, tissue damage, and the development of lung diseases.This review summarizes recent research on the damage caused by CS to AECs, showing that CS can promote cell death and damage through induction of oxidative stress, autophagy, endoplasmic reticulum stress, mitochondrial dysfunction, inflammation, and epithelial-mesenchymal transition. It also affects the proliferative function of alveolar type II epithelial cells. The review highlights that CS-induced oxidative stress is a key factor in causing various types of damage, with TRP ion channels serving as important triggers. Inhibiting CS-induced oxidative damage can significantly prevent cell death and subsequent diseases such as pulmonary emphysema. The activation of the same pathway induced by CS can lead to different types of cell damage, potentially encouraging the development of different diseases. CS can either directly induce or indirectly promote cell inflammation through endoplasmic reticulum stress, mitochondrial dysfunction, and senescence. There are interconnected relationships between these mechanisms, and SIRT1 is an important protein in preventing CS-induced AECs damage. Increasing SIRT1 activity can alleviate CS-induced autophagy, endoplasmic reticulum stress, and senescence in various cell damages; its substrate NAD+ is already used clinically, and its effectiveness in COPD treatment deserves further exploration. The impact of CS on cells varies based on concentration: lower concentrations stimulate stress responses or apoptosis, while higher concentrations lead to apoptosis or necrosis through various mechanisms, ultimately impairing lung epithelial function. When external stimuli exceed the cells’ self-healing capacity, they can cause damage to cells, lung epithelial barriers, and alveoli, promoting the development of related lung diseases. Key proteins that play a protective role may serve as potential targets to mitigate cell damage.This review provides insights into the various mechanisms through which CS induces damage to AECs, covering important transcription factors, DNA repair proteins, and membrane channel proteins, paving the way for the study of new mechanisms and pathways. However, there are still unanswered questions, such as the need for further exploration of the upstream pathways of CS-induced autophagy in AECs and the intrinsic mechanisms of CS in enhancing the stem cell properties of AECs and its relationship to the occurrence of lung cancer.It is expected that this article will provide a theoretical basis for future research on the mechanisms of lung epithelial cell damage caused by CS or its individual components and inspire clinical strategies for the prevention and treatment of smoking-related lung diseases.
6.The Role of α7nAChR in Alzheimer’s Disease
Dao-Bo DING ; Wen-Jun MU ; Xin LI ; Huan CHEN ; Hong-Wei HOU ; Qing-Yuan HU
Progress in Biochemistry and Biophysics 2024;51(11):2897-2904
As the global population continues to age, the incidence of Alzheimer’s disease (AD), one of the most common neurodegenerative diseases, continues to rise significantly. As the disease progresses, the patient’s daily living abilities gradually decline, potentially leading to a complete loss of self-care abilities. According to estimates by the Alzheimer’s Association and the World Health Organization, AD accounts for 60%-70% of all other dementia cases, affecting over 55 million people worldwide. The case number is estimated to double by 2050. Despite extensive research, the precise etiology and pathogenesis of AD remain elusive. Researchers have a profound understanding of the disease’s pathological hallmarks, which include amyloid plaques and neurofibrillary tangles resulting from the abnormal phosphorylation of Tau protein. However, the exact causes and mechanisms of the disease are still not fully understood, leaving a vital gap in our knowledge and understanding of this debilitating disease. A crucial player that has recently emerged in the field of AD research is the α7 nicotinic acetylcholine receptor (α7nAChR). α7nAChR is composed of five identical α7 subunits that form a homopentamer. This receptor is a significant subtype of acetylcholine receptor in the central nervous system and is widely distributed in various regions of the brain. It is particularly prevalent in the hippocampus and cortical areas, which are regions associated with learning and memory. α7nAChR plays a pivotal role in several neurological processes, including neurotransmitter release, neuronal plasticity, cell signal transduction, and inflammatory response, suggesting its potential involvement in numerous neurodegenerative diseases, including AD. In recent years, the role of α7nAChR in AD has been the focus of extensive research. Emerging evidence suggests that α7nAChR is involved in several critical steps in the disease progression of AD. These include involvement in the metabolism of amyloid β-protein (Aβ), the phosphorylation of Tau protein, neuroinflammatory response, and oxidative stress. Each of these processes contributes to the development and progression of AD, and the involvement of α7nAChR in these processes suggests that it may play a crucial role in the disease’s pathogenesis. The potential significance of α7nAChR in AD is further reinforced by the observation that alterations in its function or expression can have significant effects on cognitive abilities. These findings suggest that α7nAChR could be a promising target for therapeutic intervention in AD. At present, the results of drug clinical studies targeting α7nAChR show that these compounds have improvement and therapeutic effects in AD patients, but they have not reached the degree of being widely used in clinical practice, and their drug development still faces many challenges. Therefore, more research is needed to fully understand its role and to develop effective treatments based on this understanding. This review aims to summarize the current understanding of the association between α7nAChR and AD pathogenesis. We provide an overview of the latest research developments and insights, and highlight potential avenues for future research. As we deepen our understanding of the role of α7nAChR in AD, it is hoped that this will pave the way for the development of novel therapeutic strategies for this devastating disease. By targeting α7nAChR, we may be able to develop more effective treatments for AD, ultimately improving the quality of life for patients and their families.
7.Effect of VEGF on the expression of genes related to ovarian steroid synthesis in mice and its mechanism
Zhi-Hui ZHANG ; Hong-Xia GAO ; Guo-Qing WANG ; Wei HOU ; Chang ZOU ; Xiao-Dan LU
Medical Journal of Chinese People's Liberation Army 2024;49(6):679-685
Objective To investigate the effect of vascular endothelial growth factor(VEGF)on the expression of genes related to ovarian steroid synthesis in mice and its underlying mechanism.Methods A transgenic mouse model with tetracycline-reversible regulation of VEGF expression was used,and the genotype of mice was identified by polymerase chain reaction(PCR).Twenty mice were divided into normal VEGF expression group(Dox+,n=10)and VEGF expression inhibition group(Dox-,n=10)by feeding them doxycycline.Western blotting was used to detect the expression of VEGF protein in ovarian tissues.Fluorescence quantitative PCR was used to detect the mRNA expression of VEGF,KDR and genes known to play roles in follicle development,such as follicle-stimulating hormone(FSH)and inhibin B(INHBB).HE staining was used to observe changes in ovarian tissue.Total RNA was extracted from mouse ovarian tissues for transcriptome sequencing,and the relevant differential genes were analyzed by FPKM and log2FC values.Results Compared with the Dox+group,the mRNA and protein levels of VEGF in the Dox-group significantly reduced,and the mRNA levels of KDR also significantly decreased(P<0.05).HE staining results showed that compared with the Dox+group,follicular development was impaired and atresia follicles appeared in the Dox-group.Sequencing analysis identified that significant differences in follicular development-related genes and steroid synthesis-related genes between the two groups(P<0.05).Enrichment analysis showed that VEGF in mouse ovaries mainly regulates ovarian steroidogenesis and other pathways.Fluorescence quantitative PCR results demonstrated that compared with the Dox+group,the follicular development-related genes(INHBB and FSHR)in the ovarian tissues of the Dox-group were significantly up-regulated(P<0.05),whereas the key genes of steroid synthesis(StAR,CYP11A1,3β-HSD)were significantly down-regulated(P<0.05).The quantitative results were basically consistent with the sequencing results.Conclusion Mice with inhibited VEGF exhibited ovarian follicular dysplasia,potentially due to the mechanism whereby VEGF inhibition downregulated the expression of genes associated with steroid synthesis,such as FSH and INHBB,thereby obstructing cholesterol metabolism.
8.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
9.Pancreaticoduodenectomy for duodenal papillary carcinoma:tumor size and lymph node metastasis affect long-term survival
Xiao CUI ; Zicheng GUO ; Hong XUE ; Sheng WEI ; Yongfan LIU ; Xiaoping GENG ; Yan HUANG ; Hui HOU
Chinese Journal of General Surgery 2024;39(9):686-691
Objective:To investigate the clinicopathological factors affecting the long-term survival of patients with duodenal papillary carcinoma (DPC) after pancreaticoduodenectomy (PD).Methods:The clinicopathological and follow-up data of patients with DPC who underwent PD at the First Affiliated Hospital of Anhui Medical University and the Second Hospital of Anhui Medical University from Jan 2015 to Dec 2021 were retrospectively analyzed.Results:All 73 cases have been followed-up. The median follow-up time was 60 months. Multivariate analysis of COX proportional risk model showed that positive lymph node metastasis and tumor size over 2.5 cm were common independent risk factors for OS and DFS. Lymph node metastasis was confirmed pathologically in 20 patients. Multivariate analysis results of Logistic regression model showed that smoking, tumor breaking through the serous layer and tumor low differentiation were independent risk factors for lymph node metastasis.Conclusions:Poor prognosis was associated with tumors that were larger than 2.5 cm, and with lymph node metastases. Preoperative smoking history, tumor breaking through the serous layer and low tumor differentiation were the predictors of positive lymph node metastasis.
10.Chlorogenic Acid Modulates Macrophages to Ameliorate Inflammatory Diseases
Huan-Huan MA ; Huan CHEN ; Hong-Wei HOU
Chinese Journal of Biochemistry and Molecular Biology 2024;40(7):914-920
Macrophages,which display remarkable specificity and plasticity,are the first-line immune cells for inflammation.After activation,they polarise into pro-inflammatory type M1 and anti-inflammato-ry type M2,with M1 producing pro-inflammatory factors such as TNF-α and IL-6 and M2 producing anti-inflammatory factors.In the inflammatory state,the ratio of pro-inflammatory factors to anti-inflammatory factors is imbalanced,and its long-term existence will lead to tissue damage and the development of in-flammatory diseases,which seriously endanger human health.Currently,non-steroidal anti-inflammatory drugs and immunosuppressants are mostly used for the treatment of this type of disease,but patients are prone to drug resistance and other side effects.Therefore,there is an urgent need to find a new direction for treatment.Chlorogenic acid,as a typical natural phenolic compound with high content in many plants such as Eucommia,Flos Lonicerae,Coffea species,etc.,has significant anti-inflammatory activities.This article comprehensively examines the distribution and metabolism of chlorogenic acid,elucidates its role in regulating the M1/M2 macrophage imbalance,and highlights its potential therapeutic value in in-flammatory diseases such as enteritis,hepatitis,pneumonia,arthritis,and neuroinflammation.These findings contribute to a deeper understanding of its clinical significance and provide novel insights for the multi-targeted treatment of inflammatory disorders.

Result Analysis
Print
Save
E-mail