1.A New Exploration on the Property and Usage of Shenshu Points
Tao HUANG ; Hong-Peng HUANG ; Jian-Shuang SHI ; Xi WEN
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(3):659-663
As an acupoint where the qi of the kidneys is infused in the back and waist,Shenshu(BL23)points belongs to the category of the foot taiyang bladder meridian,which is widely used clinically in the treatment of genitourinary system diseases.Shenshu points are located in the back of the human body foot taiyang bladder meridian direct branch circulation,and for the foot shaoyin meridian of where the symptom is,therefore it has a special property.However,there is a lack of in-depth research on the point properties and utilization of Shenshu points,thus this paper explores their acupoint properties based on the theories of channel,symptom and root cause,and the four seas,and investigates the correlations between their therapeutic efficacy and the method of moxibustion,acupoint matching,and depth of needling through the ancient books and clinical practice.The results showed that different methods of acupuncture and moxibustion,the combination of acupoints,and the depth of needling can stimulate the different therapeutic effects of the Shenshu.Therefore,the therapeutic effects of the Shenshu points can only be better utilized if the acupoints are clearly identified and supplemented with appropriate methods of acupuncture and moxibustion,the compatibility of acupoints,and the depth of needling.
2.Analysis of HUANG Feng's Medication Rules for Low Back Pain Based on Data Mining
Wen-Xing ZENG ; Min-Hua HU ; Yuan-Lan FENG ; Jing-Tao ZHANG ; Lu-Yao MA ; Hong-Song YAN ; Feng HUANG
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(4):1030-1035
Objective To analyze the medication rules of Professor HUANG Feng for the treatment of low back pain using data mining methods.Methods The information of prescriptions for the effective cases of outpatients with low back pain treated by Professor HUANG Feng were collected and screened.Microsoft Excel 2019 was used to analyze the frequency of medication and the distribution of properties,flavors and meridian tropism of the drugs in the included prescription.IBM SPSS Modeler 18.0 was used for association rule analysis,and IBM Statistics 26.0 was used for cluster analysis.Results A total of 239 prescriptions and 75 Chinese medicines were included.There were 23 high-frequency Chinese medicines with the medication frequency being or over 20 times,and the top 10 Chinese medicines were Glycyrrhizae Radix et Rhizoma,vinegar-processed Corydalis Rhizoma,Cibotii Rhizoma,Atractylodis Macrocephalae Rhizoma,Zanthoxyli Radix,salt-processed Achyranthis Bidentatae Radix,Rehmanniae Radix,Dipsaci Radix,Coicis Semen,and Salviae Miltiorrhizae Radix et Rhizoma.The medicines were mainly warm in nature,and were sweet,bitter and pungent in flavor.Most of the drugs had the meridian tropism of liver,stomach and spleen meridians.Among the drug combinations obtained from association rule analysis with the top 20 highest support,vinegar-processed Corydalis Rhizoma,Cibotii Rhizoma,Atractylodis Macrocephalae Rhizoma and Zanthoxyli Radix were the core drugs.Cluster analysis yielded 6 clustering combinations.Conclusion For the treatment of low back pain,Professor HUANG Feng follows the principle of"treatment adapting to the climate,individuality,and environment"and"treating the root cause of the disease",usually adopts the drugs for activating blood,moving qi and relieving pain,nourishing the liver and kidney,and also uses the medicines for replenishing qi and strengthening the spleen.The ideas of HUANG Feng for the treatment of low back pain can be used as a reference for the clinical treatment.
3.Epidemiological Surveillance:Genetic Diversity of Rotavirus Group A in the Pearl River Delta,Guangdong,China in 2019
Ying Jie JIANG ; Dan LIANG ; Li WANG ; Yun XIAO ; Feng Yu LIANG ; Xia Bi KE ; Juan SU ; Hong XIAO ; Tao WANG ; Min ZOU ; Jian Hong LI ; Wen Chang KE
Biomedical and Environmental Sciences 2024;37(3):278-293
Objective This study aimed to understand the epidemic status and phylogenetic relationships of rotavirus group A(RVA)in the Pearl River Delta region of Guangdong Province,China. Methods This study included individuals aged 28 days-85 years.A total of 706 stool samples from patients with acute gastroenteritis collected between January 2019 and January 2020 were analyzed for 17 causative pathogens,including RVA,using a Gastrointestinal Pathogen Panel,followed by genotyping,virus isolation,and complete sequencing to assess the genetic diversity of RVA. Results The overall RVA infection rate was 14.59%(103/706),with an irregular epidemiological pattern.The proportion of co-infection with RVA and other pathogens was 39.81%(41/103).Acute gastroenteritis is highly prevalent in young children aged 0-1 year,and RVA is the key pathogen circulating in patients 6-10 months of age with diarrhea.G9P[8](58.25%,60/103)was found to be the predominant genotype in the RVA strains,and the 41 RVA-positive strains that were successfully sequenced belonged to three different RVA genotypes in the phylogenetic analysis.Recombination analysis showed that gene reassortment events,selection pressure,codon usage bias,gene polymorphism,and post-translational modifications(PTMs)occurred in the G9P[8]and G3P[8]strains. Conclusion This study provides molecular evidence of RVA prevalence in the Pearl River Delta region of China,further enriching the existing information on its genetics and evolutionary characteristics and suggesting the emergence of genetic diversity.Strengthening the surveillance of genotypic changes and gene reassortment in RVA strains is essential for further research and a better understanding of strain variations for further vaccine development.
4.Development of a High-throughput Sequencing Platform for Detection of Viral Encephalitis Pathogens Based on Amplicon Sequencing
Li Ya ZHANG ; Zhe Wen SU ; Chen Rui WANG ; Yan LI ; Feng Jun ZHANG ; Hui Sheng LIU ; He Dan HU ; Xiao Chong XU ; Yu Jia YIN ; Kai Qi YIN ; Ying HE ; Fan LI ; Hong Shi FU ; Kai NIE ; Dong Guo LIANG ; Yong TAO ; Tao Song XU ; Feng Chao MA ; Yu Huan WANG
Biomedical and Environmental Sciences 2024;37(3):294-302
Objective Viral encephalitis is an infectious disease severely affecting human health.It is caused by a wide variety of viral pathogens,including herpes viruses,flaviviruses,enteroviruses,and other viruses.The laboratory diagnosis of viral encephalitis is a worldwide challenge.Recently,high-throughput sequencing technology has provided new tools for diagnosing central nervous system infections.Thus,In this study,we established a multipathogen detection platform for viral encephalitis based on amplicon sequencing. Methods We designed nine pairs of specific polymerase chain reaction(PCR)primers for the 12 viruses by reviewing the relevant literature.The detection ability of the primers was verified by software simulation and the detection of known positive samples.Amplicon sequencing was used to validate the samples,and consistency was compared with Sanger sequencing. Results The results showed that the target sequences of various pathogens were obtained at a coverage depth level greater than 20×,and the sequence lengths were consistent with the sizes of the predicted amplicons.The sequences were verified using the National Center for Biotechnology Information BLAST,and all results were consistent with the results of Sanger sequencing. Conclusion Amplicon-based high-throughput sequencing technology is feasible as a supplementary method for the pathogenic detection of viral encephalitis.It is also a useful tool for the high-volume screening of clinical samples.
5.Epidemiological characteristics and diagnosis of imported Plasmodium malariae and Plasmodium ovale malaria cases in five provinces of China from 2014 to 2021
Wen LIN ; Duoquan WANG ; Lingcong SUN ; Tao ZHANG ; Hui YAN ; Wei RUAN ; Ying LIU ; Dongni WU ; Shizhu LI ; Jing XIA ; Hong ZHU
Chinese Journal of Schistosomiasis Control 2024;36(4):407-411
Objective To investigate the epidemiological characteristics and diagnosis of imported Plasmodium malariae and P. ovale malaria cases in Anhui Province, Hubei Province, Zhejiang Province, Guangxi Zhuang Autonomous Region and Henan Province from 2014 to 2021, so as to provide insights into malaria control in these five provinces. Methods All data pertaining to malaria cases reported in five provinces of China were captured from Chinese Disease Control and Prevention Information System from 2014 to 2021, and the epidemiological characteristics of imported P. malariae and P. ovale malaria cases were analysed using a descriptive epidemiological method. The duration from onset of malaria to initial diagnosis, duration from initial diagnosis to definitive diagnosis, institutions of initial and definitive diagnoses, and proportion of correct malaria diagnosis at initial diagnosis were statistically analyzed. Results A total of 1 223 imported P. malariae and P. ovale malaria cases were reported in Anhui Province, Hubei Province, Zhejiang Province, Henan Province and Guangxi Zhuang Autonomous Region from 2014 to 2021, there were 158 P. malariae malaria cases (12.92%) and 1 065 P. ovale malaria cases (87.08%). Totally 98.53% (1 205/1 223) of the imported malaria cases were from Africa, with Angola (18.99%, 30/158), Nigeria (11.39%,18/158), Cameroon (10.76%, 17/158), Ghana (10.13%, 16/158) and the Democratic Republic of the Congo (10.13%,16/158) as predominant countries where P. malariae malaria cases were from, and Ghana (23.19%, 247/1 065), Cameroon (14.74%, 157/1 065), Nigeria (9.39%, 100/1 065) and Angola (6.95%, 74/1 065) as predominant countries where P. ovale malaria cases were from. There were significant differences in the duration from onset of malaria to initial diagnosis (χ2 = 27.673, P = 0.000) and duration from initial diagnosis to definitive diagnosis of P. malariae and P. ovale malaria cases (χ2 = 29.808, P = 0.000), and the proportions of correct initial diagnosis of P. malariae and P. ovale malaria cases were 38.61% (61/158) and 56.53% (602/1 065). There were 74.69% (118/158) of P. malariae malaria cases with definitive diagnosis in county-, city-, and province-level medical institutions, and 79.25% (844/1 065) of P. ovale malaria cases with definitive diagnosis in county- and city-level medical institutions and county-level centers for disease control and prevention. Conclusions The imported P. malariae and P. ovale malaria cases in Anhui Province, Hubei Province, Zhejiang Province, Henan Province and Guangxi Zhuang Autonomous Region from 2014 to 2021 were mainly returned from Africa and the proportion of correct diagnosis of P. malariae and P. ovale malaria was low at initial diagnosis. Persistent improvements in the diagnostic capability of malaria are required in medical institutions.
6.Application of Functionalized Liposomes in The Delivery of Natural Products
Cheng-Yun WANG ; Xin-Yue LAN ; Jia-Xuan GU ; Xin-Ru GAO ; Long-Jiao ZHU ; Jun LI ; Bing FANG ; Wen-Tao XU ; Hong-Tao TIAN
Progress in Biochemistry and Biophysics 2024;51(11):2947-2959
Plant natural products have a wide range of pharmacological properties, not only can they be used as plant dietary supplements to meet the nutritional needs of the human body in the accelerated pace of life, but also occupy an important position in the research and development of therapeutic drugs for the treatment of tumors, inflammation and other diseases, and have been widely accepted by the public due to their good safety. However, despite the above advantages of plant natural products, limiting factors such as low solubility, poor stability, lack of targeting, high toxicity and side effects, and unacceptable odor have greatly impeded their conversion to clinical applications. Therefore, the development of new avenues for the application of new natural products has become an urgent problem to be solved at present. In recent years, with the continuous development of research, various strategies have been developed to improve the bioavailability of natural products. Among them, nanocarrier delivery system is one of the most attractive strategies at present. In past studies, a large number of nanomaterials (organic, inorganic, etc.) have been developed to encapsulate plant-derived natural products for their efficient delivery to specific organs and cells. Up to now, nanotechnology has not only been limited to pharmaceutical applications, but is also competing in the fields of nanofood processing technology and nanoemulsions. Among the various nanocarriers, liposomes are the largest nanocarriers with the largest market share at present. Liposomes are bilayer nanovesicles synthesized from amphiphilic substances, which have advantages such as high drug loading capacity and stability. Attractively, the flexible surface of liposomes can be modified with various functional elements. Functionalized modification of liposomes with different functional elements such as antibodies, nucleic acids, peptides, and stimuli-responsive moieties can bring out the excellent drug delivery function of liposomes to a greater extent. For example, the modification of functional elements with targeting function such as nucleic acids and antibodies on the surface of liposomes can deliver natural products to the target location and improve the bioavailability of drugs; the modification of stimulus-responsive groups such as photosensitizers, magnetic nanoparticles, pH-responsive groups, and temperature sensitizers on the surface of liposomes can achieve controlled release of drugs, localized targeting, and synergistic thermotherapy. In addition to the above properties, by using functionalized liposomes to encapsulate natural products with irritating properties can also effectively mask the irritating properties of natural products, improve public acceptance, and increase the possibility of application of irritating natural products. There are various strategies for modifying liposomes with functional elements, and the properties of functionalized liposomes constructed by different construction strategies differ. The commonly used construction strategies for functionalized liposomes include covalent modification and non-covalent modification. These two types of construction strategies have their own advantages and disadvantages. Covalent modification has better stability than non-covalent modification, but its operation is cumbersome. With the above background, this review focuses on the three typical problems faced by plant natural products at present, and summarizes the specific applications of functionalized liposomes in them. In addition, this paper summarizes the construction strategies for building different types of functionalized liposomes. Finally, this paper will also review the opportunities and challenges faced by functionalized liposomes to enter clinical therapy, and explore the opportunities to overcome these problems, with a view to better realizing the precise control of plant nanomedicines, and providing ideas and inspirations for researchers in related fields as well as relevant industrial staff.
7.Grade quality standard development of Lycium barbarum fruits from Ningxia genuine producing area
Zhong-lian YU ; Xue-ping LI ; Li YANG ; Zheng-tao WANG ; Wen-jing LIU ; Rui WANG ; Yan-hong SHI
Acta Pharmaceutica Sinica 2024;59(5):1399-1407
An integrated evaluation model based on the combination of traditional trait identification and modern chemical analysis was used for the identification of key indexes of grade classification and the establishment of grade quality standard of
8.Construction and application of simulation model of percutaneous intramuscular septal radiofrequency ablation based on COMSOL Multiphysics
Yu-Peng HAN ; Tao ZHANG ; Peng WANG ; Rui HU ; Hong-Liang ZHAO ; Li-Wen LIU ; Can-Hua XU
Chinese Medical Equipment Journal 2024;45(4):45-50
Objective To construct a simulation model for percutaneous intramuscular septal radiofrequency ablation,and to explore the effects of different excitation voltages and ablation time on ablation areas.Methods By using Mimics software the segmentation and three-dimensional surface reconstruction of the tissue in various regions of the heart were realized based on the preoperative CT data of some patients with obstructive hypertrophic cardiomyopathy,and the reconstructed tissue was transformed into three-dimensional solid models with SolidWorks software,then the models were combined with the electrode needle mechanism established in COMSOL Multiphysics simulation software to form a simulation model for percutaneous intramuscular septal radiofrequency ablation.Electromagnetic and thermal multiphysics field boundary conditions were set with the model developed,and the tissue temperature distribution and the effects of ablation time and excitation voltage on the ablation region were simulated and analyzed.Results Simulation analysis of percutaneous intramuscular septal radiofrequency ablation could be carried out with the model developed,and different excitation voltages and ablation time proved to have significant effects on the effective ablation region.Conclusion The model constructed for percutaneous intramuscular septal radiofrequency ablation lays a foundation for the following research of the effects of multiple factors on ablation outcomes,which is of significance for parameter optimization in actual clinical treatment.[Chinese Medical Equipment Journal,2024,45(4):45-50]
9.Comparison of three dose verification methods in intensity modulated radiation therapy using PTW Detector729
Xiao-Hui WU ; Zu-Wen YAO ; Shan-Shan XU ; Tao-Hong LUO ; Xiao-Rong HU ; Yang YAO ; Xiao-Hua WANG
Chinese Medical Equipment Journal 2024;45(5):56-59
Objective To compare the three methods in intensity modulated radiation therapy(IMRT)dose verification using PTW Detector729.Methods A total of 50 patients with nasopharyngeal cancer,lung cancer,breast cancer,cervical cancer and whole brain radiation therapy who completed radiation treatment at some hospital from January to December 2022 were selected retrospectively.Two-dimensional(zero and actual gantry angles)and three-dimensional dose verifications were carried out for the IMRT plans using PTW Detector729 2D ionization chamber matrix combined with PTW RW3 solid water and PTW Ocavius 4D rotation unit.The dose assessment threshold was set to 10%,and the γ pass rates of the three verification methods were counted under four assessment criteria,namely 3%/1 mm,2%/2 mm,3%/2 mm and 3%/3 mm.SPSS 22.0 statistical software was used for data analysis.Results Under the 10%dose assessment threshold criterion,zero-gantry-angle 2D dose verification had the highest γ pass rate,and the differences were statistically significant(P<0.05);actual-gantry-angle 2D dose verification had the γ pass rate higher than that of 3D verification,and the differences were statistically significant(P<0.05).The γ pass rates of the three verification methods gradually increased under four criteria,namely,3%/1 mm,2%/2 mm,3%/2 mm and 3%/3 mm,and exceeded 90%under the 3%/2 mm criterion,and the results met the requirements of clinical radiotherapy.Conclusion The results of the three verification methods satisfy the requirements of the IMRT dose verification practice guidelines,and the selection of appropriate verification methods is of great significance to ensure the implementation of the treatment plan.[Chinese Medical Equipment Journal,2024,45(5):56-59]
10.Preparation of Metal Organic Framework-derived Microflower-Like NiO-In2O3 Composite Structure and Its Detection Performance for Ultra-Low Concentration of Formaldehyde Gas
Cui-Xian LUO ; Jiao-Hong HOU ; Wen-Tao JIA ; Da-Ming WANG ; Ling-Rong XUE
Chinese Journal of Analytical Chemistry 2024;52(8):1141-1151
Formaldehyde is a prevalent organic solvent in industrial and indoor environment,which can seriously harm human health,so it is of great significance to develop highly sensitive formaldehyde sensors with fast response,low detection limit and long life.In this study,the NiO-In2O3 composite structure was prepared using indium-based metal organic framework(In-MOF)as the precursor,and the formaldehyde gas sensor was constructed with In2O3 and NiO-In2O3 composite structure as the sensitive material.The results demonstrated that the In2O3 material had a microflower-like structure,while the NiO-In2O3 composite structure was composed of NiO nanoparticles attached to the surface of In2O3.The sensor exhibited excellent detection performance for formaldehyde in the environment of relative humidity of 33%and 75%,especially the response characteristic of the NiO-In2O3 composite structure sensor to formaldehyde was considerably better than that of the In2O3 sensor under the same test conditions,which was closely related to the catalytic effect of NiO and the heterogeneous structure formed between NiO and In2O3.The NiO-In2O3 composite structure sensor had a response value of 21.3 and 12.6 to 10 μL/L formaldehyde when the relative humidity was 33%and 75%at 200℃.The response/recovery time was 4/6 s and 7/10 s,and the limit of detection(LOD)was 1.2×10-7 μL/L and 4.1×10-5 μL/L respectively.Meanwhile,the sensor had excellent selectivity and long-term stability.This sensor showed a wide application prospect in the field of high-performance detection of low concentration of formaldehyde gas.

Result Analysis
Print
Save
E-mail