1.Clinical guidelines for the treatment of ankylosing spondylitis combined with lower cervical fracture in adults (version 2024)
Qingde WANG ; Yuan HE ; Bohua CHEN ; Tongwei CHU ; Jinpeng DU ; Jian DONG ; Haoyu FENG ; Shunwu FAN ; Shiqing FENG ; Yanzheng GAO ; Zhong GUAN ; Hua GUO ; Yong HAI ; Lijun HE ; Dianming JIANG ; Jianyuan JIANG ; Bin LIN ; Bin LIU ; Baoge LIU ; Chunde LI ; Fang LI ; Feng LI ; Guohua LYU ; Li LI ; Qi LIAO ; Weishi LI ; Xiaoguang LIU ; Hongjian LIU ; Yong LIU ; Zhongjun LIU ; Shibao LU ; Yong QIU ; Limin RONG ; Yong SHEN ; Huiyong SHEN ; Jun SHU ; Yueming SONG ; Tiansheng SUN ; Yan WANG ; Zhe WANG ; Zheng WANG ; Hong XIA ; Guoyong YIN ; Jinglong YAN ; Wen YUAN ; Zhaoming YE ; Jie ZHAO ; Jianguo ZHANG ; Yue ZHU ; Yingjie ZHOU ; Zhongmin ZHANG ; Wei MEI ; Dingjun HAO ; Baorong HE
Chinese Journal of Trauma 2024;40(2):97-106
Ankylosing spondylitis (AS) combined with lower cervical fracture is often categorized into unstable fracture, with a high incidence of neurological injury and a high rate of disability and morbidity. As factors such as shoulder occlusion may affect the accuracy of X-ray imaging diagnosis, it is often easily misdiagnosed at the primary diagnosis. Non-operative treatment has complications such as bone nonunion and the possibility of secondary neurological damage, while the timing, access and choice of surgical treatment are still controversial. Currently, there are no clinical practice guidelines for the treatment of AS combined with lower cervical fracture with or without dislocation. To this end, the Spinal Trauma Group of Orthopedics Branch of Chinese Medical Doctor Association organized experts to formulate Clinical guidelines for the treatment of ankylosing spondylitis combined with lower cervical fracture in adults ( version 2024) in accordance with the principles of evidence-based medicine, scientificity and practicality, in which 11 recommendations were put forward in terms of the diagnosis, imaging evaluation, typing and treatment, etc, to provide guidance for the diagnosis and treatment of AS combined with lower cervical fracture.
2.Study of phenylpropanoids from Tripterygium hypoglaucum
Zhi-qi LIN ; Hong-bo ZHU ; Tang ZHOU ; Ji WANG ; Rong-ping ZHANG ; Xing-long CHEN
Acta Pharmaceutica Sinica 2024;59(6):1730-1740
This paper aimed to study phenylpropanoids of
3.Improvement Effect and Its Mechanism of Marmesin on Cognitive Impairment in Mice with Alzheimer's Disease
Zhuang-Zhuang LIU ; Shi-Jie SU ; Hong-Ying YANG ; Hai-Xia DING ; Ya-Ru PAN ; Han CAI ; Lei-Jie LIN ; Wei-Rong LI ; Qi WANG
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(10):2758-2768
Objective To investigate the improvement effect and mechanism of marmesin on cognitive impairment in Alzheimer's disease(AD)mice.Methods Fifty mice were randomly divided into five groups:blank group,model group,low-and high-dose marmesin groups and donepezil(positive drug)group,with 10 mice in each group.After 21 days of continuous administration,except for the blank group,the mice in other groups were given intraperitoneal injection of scopolamine to establish the AD model.Network pharmacology was used to construct the protein-protein interaction(PPI)network of common targets of marmesin in the treatment of AD,and gene ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analysis were performed to provide further research direction.The cognitive function of AD model mice was evaluated by Morris water maze,open field test and new object recognition test.Nissl staining was used to observe the damage of hippocampal neurons.The levels of acetylcholine(Ach),acetylcholine transferase(ChAT),acetylcholinesterase(AChE),reactive oxygen species(ROS),malondialdehyde(MDA)and catalase(CAT)in hippocampus of mice were detected by kit.The protein expression levels of interleukin 6(IL-6),interleukin 1β(IL-1 β),tumor necrosis factor α(TNF-α),nuclear factor E2-related factor 2(NRF2),silent information regulator homologous protein 3(SIRT3),Kelch-like ECH-associated protein 1(KEAP1),quinone oxidoreductase 1(NQO1)and heme oxygenase 1(HO-1)in hippocampus were detected by Western Blot.Results Compared with the model group,the latency of Morris water maze test was significantly shortened in the high-dose marmesin group,the time of entering the target area in the open field new object test and the movement distance in the central area of the open field were prolonged,the number of neurons in the hippocampal CA1 and CA3 regions was significantly increased,the levels of ChAT and Ach in the hippocampus were significantly increased,AChE level was significantly decreased,CAT level was significantly increased,ROS and MDA levels were significantly decreased,TNF-α expression level was decreased,SIRT3 and HO-1 expression levels were increased,and KE AP1 protein expression level was decreased,the differences being statistically significant(P<0.05 or P<0.01 or P<0.001).Conclusion Marmesin can effectively improve the learning and memory impairment of AD mice,and its mechanism may be related to the activation of NRF2/SIRT3 signaling pathway,thereby alleviating oxidative stress level and neuroinflammation,and repairing cholinergic neuron function.
4.A multicenter study of neonatal stroke in Shenzhen,China
Li-Xiu SHI ; Jin-Xing FENG ; Yan-Fang WEI ; Xin-Ru LU ; Yu-Xi ZHANG ; Lin-Ying YANG ; Sheng-Nan HE ; Pei-Juan CHEN ; Jing HAN ; Cheng CHEN ; Hui-Ying TU ; Zhang-Bin YU ; Jin-Jie HUANG ; Shu-Juan ZENG ; Wan-Ling CHEN ; Ying LIU ; Yan-Ping GUO ; Jiao-Yu MAO ; Xiao-Dong LI ; Qian-Shen ZHANG ; Zhi-Li XIE ; Mei-Ying HUANG ; Kun-Shan YAN ; Er-Ya YING ; Jun CHEN ; Yan-Rong WANG ; Ya-Ping LIU ; Bo SONG ; Hua-Yan LIU ; Xiao-Dong XIAO ; Hong TANG ; Yu-Na WANG ; Yin-Sha CAI ; Qi LONG ; Han-Qiang XU ; Hui-Zhan WANG ; Qian SUN ; Fang HAN ; Rui-Biao ZHANG ; Chuan-Zhong YANG ; Lei DOU ; Hui-Ju SHI ; Rui WANG ; Ping JIANG ; Shenzhen Neonatal Data Network
Chinese Journal of Contemporary Pediatrics 2024;26(5):450-455
Objective To investigate the incidence rate,clinical characteristics,and prognosis of neonatal stroke in Shenzhen,China.Methods Led by Shenzhen Children's Hospital,the Shenzhen Neonatal Data Collaboration Network organized 21 institutions to collect 36 cases of neonatal stroke from January 2020 to December 2022.The incidence,clinical characteristics,treatment,and prognosis of neonatal stroke in Shenzhen were analyzed.Results The incidence rate of neonatal stroke in 21 hospitals from 2020 to 2022 was 1/15 137,1/6 060,and 1/7 704,respectively.Ischemic stroke accounted for 75%(27/36);boys accounted for 64%(23/36).Among the 36 neonates,31(86%)had disease onset within 3 days after birth,and 19(53%)had convulsion as the initial presentation.Cerebral MRI showed that 22 neonates(61%)had left cerebral infarction and 13(36%)had basal ganglia infarction.Magnetic resonance angiography was performed for 12 neonates,among whom 9(75%)had involvement of the middle cerebral artery.Electroencephalography was performed for 29 neonates,with sharp waves in 21 neonates(72%)and seizures in 10 neonates(34%).Symptomatic/supportive treatment varied across different hospitals.Neonatal Behavioral Neurological Assessment was performed for 12 neonates(33%,12/36),with a mean score of(32±4)points.The prognosis of 27 neonates was followed up to around 12 months of age,with 44%(12/27)of the neonates having a good prognosis.Conclusions Ischemic stroke is the main type of neonatal stroke,often with convulsions as the initial presentation,involvement of the middle cerebral artery,sharp waves on electroencephalography,and a relatively low neurodevelopment score.Symptomatic/supportive treatment is the main treatment method,and some neonates tend to have a poor prognosis.
5.Research progress in regulatory mechanism and traditional Chinese medicine intervention of circular RNA for coronary atherosclerotic heart disease
Lan-Tian HU ; Xue-Na XIE ; Yu-Ying WANG ; Mei LIU ; Hong-Ai GUO ; Rong YUAN ; Qi-Qi XIN ; Yu MIAO ; Wei-Hong CONG
Chinese Pharmacological Bulletin 2024;40(11):2014-2019
Coronary atherosclerotic heart disease(CHD)is an ischemic cardiovascular condition caused by the narrowing or blockage of the vascular lumen due to coronary atherosclerosis.Clinically,it presents as angina pectoris,heart failure,or sud-den cardiac death,and stands as one of the primary causes of mortality among both urban and rural populations in China.Cir-cRNA,classified as non-coding RNAs,can function as upstream regulatory molecules for miRNA or RNA-binding proteins.They actively participate in various pathological processes associated with CHD,including endothelial cell dysfunction,smooth mus-cle cell migration,macrophage-derived foam cell formation,an-giogenesis,myocardial injury,and repair,as well as post-in-farction heart failure.The expression pattern of these molecules is highly specific to the illness and tissue,indicating their poten-tial as therapeutic targets for disease management and as biomar-kers.Furthermore,they also open up new avenues for drug tar-get development in the field of traditional Chinese medicine.This article aims to provide an overview of the recent research progress on circRNA in the regulation of coronary heart disease,as well as the mechanisms involved in traditional Chinese medi-cine.It serves as a valuable reference for future research on cor-onary heart disease.
6.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
7.Effects of different processing methods on oil components in Gleditsiae sinensis Fructus and Gleditsiae Fructus Abnormalis
Shi-Rong DOU ; Yan-Gang CAO ; Kai LI ; Lian-Qi TIAN ; Xiang-Le MENG ; Yan-Bang SHI ; Li-Xian ZHANG ; Hong-Wei LI ; Wei-Sheng FENG
Chinese Traditional Patent Medicine 2024;46(6):1809-1818
AIM To investigate the effects of stir-frying,processing with butter and carbonizing by stir-frying on oil components in Gleditsiae sinensis Fructus and Gleditsiae Fructus Abnormalis.METHODS The volatile oils and fatty oils were extracted by steam distillation method and Soxhlet extraction method,respectively,after which the extraction rates were determined.GC-MS was applied to analyzing the kinds and relative contents of oil components,after which cluster analysis was performed.RESULTS After the processing,the two medicinal materials demonstrated increased extraction rates of fatty oils and decreased extraction rates of volatile oils(except for processing with butter),the extraction rates of oil components in Gleditsiae sinensis Fructus were higher than those in Gleditsiae Fructus Abnormalis,and the reduced relative contents of toxic olefin benzene components were observable.CONCLUSION The kinds and relative contents of oil components in Gleditsiae sinensis Fructus and Gleditsiae Fructus Abnormalis exist obvious differences,the former displays better medicinal quality,whose processing mechanism in alleviating dryness and strength may contribute to the reduction of relative contents of toxic olefin benzene components.
8. Advance in Traditional Chinese Medicine for Alzheimer's disease by regulating microglia
Yu-Fan PAN ; Yu-Fan PAN ; Qi-Qi XIN ; Rong YUAN ; Yu MIAO ; Wei-Hong CONG
Chinese Pharmacological Bulletin 2023;39(2):207-211
Microglia, the main immune macrophages in the central nervous system, can be highly involved in the occurrence and development of Alzheimer's disease(AD)through microglia polarization and receptor protein expression. Traditional Chinese Medicine has been demonstrated to have regulatory effects on MG. Many active components in Traditional Chinese herbs play important roles in decreasing β-amyloid peptide(Aβ)accumulation, inhibiting neuro-inflammation and regulating microglia polarization etc. In this study the role of microglia in the pathogenesis of AD and the mechanism by which Traditional Chinese Medicine regulating microglia are reviewed to provide a reference for the treatment of AD.
9. Prevention and inhibition of nasopharyngeal carcinoma growth by attenuated salmonella SGN1
Yun-Hao LAI ; Ting-Qi HUANG ; Shi LIU ; Yue-Rong PENG ; Fang-Hong LI ; Zheng-Gang ZHAO ; Su-Jin ZHOU ; Zi-Jian ZHAO ; Qi-Ting TAN ; Jia-Luo MAI
Chinese Pharmacological Bulletin 2023;39(10):1867-1873
Aim To study the inhibitory effect of attenuated salmonella SGN1, overexpressing methioninase, on nasopharyngeal carcinoma (NPC) and the underlying mechanism. Methods The cell proliferation, cell cycle, cell apoptosis, clony formation and migration a-bility of 5-8F, HNE-2, CNE-2 cells were measured u-sing flow cytometry assay, clone formation assay, and wound assay after the methionine restriction treatment. 5-8F, HNE-2, CNE-2 cells were infected with SGN1 at the multiplicity of infection (MOI) of 1: 100 for 5 hours, followed with the measurement of cell growth. A xenograft model was constructed by subcutaneous injection of 5-8F cells in mice to observe the inhibitory effect of SGN1 on nasopharyngeal carcinoma. Results Compared with the control group, methionine restriction significantly inhibited the proliferation, migration ability, and clone formation of nasopharyngeal carcinoma cells and blocked the G
10.Clinical guideline for diagnosis and treatment of adult ankylosing spondylitis combined with thoracolumbar fracture (version 2023)
Jianan ZHANG ; Bohua CHEN ; Tongwei CHU ; Yirui CHEN ; Jian DONG ; Haoyu FENG ; Shunwu FAN ; Shiqing FENG ; Yanzheng GAO ; Zhong GUAN ; Yong HAI ; Lijun HE ; Yuan HE ; Dianming JIANG ; Jianyuan JIANG ; Bin LIN ; Bin LIU ; Baoge LIU ; Dechun LI ; Fang LI ; Feng LI ; Guohua LYU ; Li LI ; Qi LIAO ; Weishi LI ; Xiaoguang LIU ; Yong LIU ; Zhongjun LIU ; Shibao LU ; Wei MEI ; Yong QIU ; Limin RONG ; Yong SHEN ; Huiyong SHEN ; Jun SHU ; Yueming SONG ; Honghui SUN ; Tiansheng SUN ; Yan WANG ; Zhe WANG ; Zheng WANG ; Yongming XI ; Hong XIA ; Jinglong YAN ; Liang YAN ; Wen YUAN ; Gang ZHAO ; Jie ZHAO ; Jianguo ZHANG ; Xiaozhong ZHOU ; Yue ZHU ; Yingze ZHANG ; Dingjun HAO ; Baorong HE
Chinese Journal of Trauma 2023;39(3):204-213
Ankylosing spondylitis (AS) combined with spinal fractures with thoracic and lumbar fracture as the most common type shows characteristics of unstable fracture, high incidence of nerve injury, high mortality and high disability rate. The diagnosis may be missed because it is mostly caused by low-energy injury, when spinal rigidity and osteoporosis have a great impact on the accuracy of imaging examination. At the same time, the treatment choices are controversial, with no relevant specifications. Non-operative treatments can easily lead to bone nonunion, pseudoarthrosis and delayed nerve injury, while surgeries may be failed due to internal fixation failure. At present, there are no evidence-based guidelines for the diagnosis and treatment of AS combined with thoracic and lumbar fracture. In this context, the Spinal Trauma Academic Group of Orthopedics Branch of Chinese Medical Doctor Association organized experts to formulate the Clinical guideline for the diagnosis and treatment of adult ankylosing spondylitis combined with thoracolumbar fracture ( version 2023) by following the principles of evidence-based medicine and systematically review related literatures. Ten recommendations on the diagnosis, imaging evaluation, classification and treatment of AS combined with thoracic and lumbar fracture were put forward, aiming to standardize the clinical diagnosis and treatment of such disorder.

Result Analysis
Print
Save
E-mail