1.Preparation of new hydrogels and their synergistic effects of immunochemotherapy
Wen-wen YAN ; Yan-long ZHANG ; Ming-hui CAO ; Zheng-han LIU ; Hong LEI ; Xiang-qian JIA
Acta Pharmaceutica Sinica 2025;60(2):479-487
In recent years, cancer treatment methods and means are becoming more and more diversified, and single treatment methods often have limited efficacy, while the synergistic effect of immunity combined with chemotherapy can inhibit tumor growth more effectively. Based on this, we constructed a sodium alginate hydrogel composite system loaded with chemotherapeutic agents and tumor vaccines (named SA-DOX-NA) with a view to the combined use of chemotherapeutic agents and tumor vaccines. Firstly, the tumor vaccine (named NA) degradable under acidic conditions was constructed by
2.Design, synthesis and evaluation of oxadiazoles as novel XO inhibitors
Hong-zhan WANG ; Ya-jun YANG ; Ying YANG ; Fei YE ; Jin-ying TIAN ; Chuan-ming ZHANG ; Zhi-yan XIAO
Acta Pharmaceutica Sinica 2025;60(1):164-171
Xanthine oxidase (XO) is an important therapeutic target for the treatment of hyperuricemia and gout. Based on the previously identified potent XO inhibitor
3. MW-9, a chalcones derivative bearing heterocyclic moieties, ameliorates ulcerative colitis via regulating MAPK signaling pathway
Zhao WU ; Nan-Ting ZOU ; Chun-Fei ZHANG ; Hao-Hong ZHANG ; Qing-Yan MO ; Ze-Wei MAO ; Chun-Ping WAN ; Ming-Qian JU ; Chun-Ping WAN ; Xing-Cai XU
Chinese Pharmacological Bulletin 2024;40(3):514-520
Aim To investigate the therapeutic effect of the MW-9 on ulcerative colitis(UC)and reveal the underlying mechanism, so as to provide a scientific guidance for the MW-9 treatment of UC. Methods The model of lipopolysaccharide(LPS)-stimulated RAW264.7 macrophage cells was established. The effect of MW-9 on RAW264.7 cells viability was detected by MTT assay. The levels of nitric oxide(NO)in RAW264.7 macrophages were measured by Griess assay. Cell supernatants and serum levels of inflammatory cytokines containing IL-6, TNF-α and IL-1β were determined by ELISA kits. Dextran sulfate sodium(DSS)-induced UC model in mice was established and body weight of mice in each group was measured. The histopathological damage degree of colonic tissue was assessed by HE staining. The protein expression of p-p38, p-ERK1/2 and p-JNK was detected by Western blot. Results MW-9 intervention significantly inhibited NO release in RAW264.7 macrophages with IC50 of 20.47 mg·L-1 and decreased the overproduction of inflammatory factors IL-6, IL-1β and TNF-α(P<0.05). MW-9 had no cytotoxicity at the concentrations below 6 mg·L-1. After MW-9 treatment, mouse body weight was gradually reduced, and the serum IL-6, IL-1β and TNF-α levels were significantly down-regulated. Compared with the model group, MW-9 significantly decreased the expression of p-p38 and p-ERK1/2 protein. Conclusions MW-9 has significant anti-inflammatory activities both in vitro and in vivo, and its underlying mechanism for the treatment of UC may be associated with the inhibition of MAPK signaling pathway.
4.Enhancement of tropane alkaloids biosynthesis in Atropa belladonna hariy root by overexpression of HnCYP82M3 and DsTRI genes
De-hui MU ; Yan-hong LIU ; Piao-piao CHEN ; Ai-juan TAN ; Bing-nan MA ; Hang PAN ; Ming-sheng ZHANG ; Wei QIANG
Acta Pharmaceutica Sinica 2024;59(3):775-783
Tropane alkaloids (TAs) are a class of anticholinergic drugs widely used in clinical practice and mainly extracted from plant, among which
5.Exploration of the Acupoint Selection Rules of Acupuncture for the Treatment of Tic Disorders in Children Based on Data Mining Techniques
Shan-Hong WU ; Zi-Han GONG ; Yan WANG ; Yang GAO ; Yi-Ming YUAN ; Ming-Yue ZHAO ; Zi-Wei ZHANG ; Tian-Yi LI ; Fei PEI
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(4):1083-1090
Objective To analyze the acupoint selection rules of acupuncture for the treatment of tic disorders in children based on data mining techniques.Methods A computerized search was conducted for the clinical research literature on acupuncture treatment of tic disorders in children included in the CNKI,Wanfang,VIP,SinoMed,and PubMed databases from January 1992 to December 2022.A database was established by Excel 2019 to count the commonly used treatment methods and analyze the high-frequency application methods acupuncture(high-frequency acupoints,channel entry of acupoints,acupoint association rules,and acupoint clustering),auricular point seed-pressing(high-frequency auricular points,and acupoint association rules),and the high frequency division of cluster needling of scalp point.Results A total of 190 valid literature articles were included,involving 270 acupuncture prescriptions;among them,184 acupoints were counted in the acupuncture method,with a total application frequency of 1 906 times,and the high-frequency application of the acupoints in descending order were Baihui(DU20),Taichong(LR3),Fengchi(GB20),Hegu(LI4),Sanyinjiao(SP6),Neiguan(PC6),Shenmen(HT7),Zusanli(ST36),Yintang(EX-HN3),Sishencong(EX-HN1);and the high-frequency meridians were governor vessol,foot taiyang stomach meridian,foot taiyang stomach meridian,foot shaoyang gallbladder meridian,hand taiyang large intestine meridian,foot taiyang bladder meridian,foot jueyin gallbladder meridian;three sets of strong association rules and five clusters of acupoints were analyzed by SPSS modeler 18.0 and IBM SPSS Statistics 26.0 software.There were 29 acupoints of auricular point seed-pressing,application total frequency was 206 times,high-frequency application of auricular points in descending order of Shenmen(HT7),liver,heart,subcortex,kidney;four groups of acupoint strong association rules were obtained through the analysis of SPSS modeler 18.0 software.A total of 14 zones were involved in the application of cephalic acupoint plexus zoning,of which the high-frequency zones were parietal anterior temporal diagonal,parietal parietal 1,and chorea tremor control zone.Conclusion Acupuncture treatment of tic disorders in children,according to its pathogenesis(liver hyperactivity,kidney depletion,spleen deficiency,phlegm disturbance,etc.)and tic site,select acupoints compatibility,and mostly choose yang meridian acupoints,which is related to the nature and treatment characteristics of wind pathogen.Children's tic disorders are closely related to emotional disorders,therefore acupuncture and auricular acupoints all emphasize the method of soothing the liver and clearing the heart,and regulating the emotional state.Cluster needling of scalp point mostly used parietal temporal anterior oblique line,parietal 1 line,and dance tremor control area for the treatment of tic disorders.For children,auricular point seed-pressing and cluster needling of scalp point has the minimun of pain,the effect of treatment is long,and it is not easy to have dangerous situations such as bent needle,broken needle and so on.
6.Nanomaterial-based Therapeutics for Biofilm-generated Bacterial Infections
Zhuo-Jun HE ; Yu-Ying CHEN ; Yang ZHOU ; Gui-Qin DAI ; De-Liang LIU ; Meng-De LIU ; Jian-Hui GAO ; Ze CHEN ; Jia-Yu DENG ; Guang-Yan LIANG ; Li WEI ; Peng-Fei ZHAO ; Hong-Zhou LU ; Ming-Bin ZHENG
Progress in Biochemistry and Biophysics 2024;51(7):1604-1617
Bacterial biofilms gave rise to persistent infections and multi-organ failure, thereby posing a serious threat to human health. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure, high adhesiveness and low drug permeability, and had been found in many human organs or tissues, such as the brain, heart, liver, spleen, lungs, kidneys, gastrointestinal tract, and skeleton. By releasing pro-inflammatory bacterial metabolites including endotoxins, exotoxins and interleukin, biofilms stimulated the body’s immune system to secrete inflammatory factors. These factors triggered local inflammation and chronic infections. Those were the key reason for the failure of traditional clinical drug therapy for infectious diseases.In order to cope with the increasingly severe drug-resistant infections, it was urgent to develop new therapeutic strategies for bacterial-biofilm eradication and anti-bacterial infections. Based on the nanoscale structure and biocompatible activity, nanobiomaterials had the advantages of specific targeting, intelligent delivery, high drug loading and low toxicity, which could realize efficient intervention and precise treatment of drug-resistant bacterial biofilms. This paper highlighted multiple strategies of biofilms eradication based on nanobiomaterials. For example, nanobiomaterials combined with EPS degrading enzymes could be used for targeted hydrolysis of bacterial biofilms, and effectively increased the drug enrichment within biofilms. By loading quorum sensing inhibitors, nanotechnology was also an effective strategy for eradicating bacterial biofilms and recovering the infectious symptoms. Nanobiomaterials could intervene the bacterial metabolism and break the bacterial survival homeostasis by blocking the uptake of nutrients. Moreover, energy-driven micro-nano robotics had shown excellent performance in active delivery and biofilm eradication. Micro-nano robots could penetrate physiological barriers by exogenous or endogenous driving modes such as by biological or chemical methods, ultrasound, and magnetic field, and deliver drugs to the infection sites accurately. Achieving this using conventional drugs was difficult. Overall, the paper described the biological properties and drug-resistant molecular mechanisms of bacterial biofilms, and highlighted therapeutic strategies from different perspectives by nanobiomaterials, such as dispersing bacterial mature biofilms, blocking quorum sensing, inhibiting bacterial metabolism, and energy driving penetration. In addition, we presented the key challenges still faced by nanobiomaterials in combating bacterial biofilm infections. Firstly, the dense structure of EPS caused biofilms spatial heterogeneity and metabolic heterogeneity, which created exacting requirements for the design, construction and preparation process of nanobiomaterials. Secondly, biofilm disruption carried the risk of spread and infection the pathogenic bacteria, which might lead to other infections. Finally, we emphasized the role of nanobiomaterials in the development trends and translational prospects in biofilm treatment.
7.Functions of Dynamin and Its Family Proteins
Zi-Yan YANG ; Zhao-Hong JIANG ; Qian-Yi ZHOU ; Zhi-Ming CHEN
Progress in Biochemistry and Biophysics 2024;51(11):2821-2831
The dynamin superfamily protein (DSP) encompasses a group of large GTPases that are involved in various membrane remodeling processes within the cell. These proteins are characterized by their ability to hydrolyze GTP, which provides the energy necessary for their function in membrane fission, fusion, and tubulation activities. Dynamin superfamily proteins play critical roles in cellular processes such as endocytosis, organelle division, and vesicle trafficking. It is typically classified into classical dynamins and dynamin-related proteins (Drp), which have distinct roles and structural features. Understanding these proteins is crucial for comprehending their functions in cellular processes, particularly in membrane dynamics and organelle maintenance. Classical dynamins are primarily involved in clathrin-mediated endocytosis (CME), a process crucial for the internalization of receptors and other membrane components from the cell surface into the cell. These proteins are best known for their role in pinching off vesicles from the plasma membrane. Structually, classical dynamins are composed of a GTPase domain, a middle domain, a pleckstrin homology (PH) domain that binds phosphoinositides, a GTPase effector domain (GED), and a proline-rich domain (PRD) that interacts with SH3 domain-containing proteins. Functionally, the classical dynamins wrap around the neck of budding vesicles, using GTP hydrolysis to constrict and eventually acting as a “membrane scissor” to cut the vesicle from the membrane. In mammals, there are three major isoforms: dynamin 1 (predominantly expressed in neurons), dynamin 2 (ubiquitously expressed), and dynamin 3 (expressed in testes, lungs, and neurons). Recent studies have also revealed some non-classical functions of classical dynamins, such as regulating the initiation and stabilization of clathrin-coated pits (CCPs) at the early stages of CME, influencing the formation of the actin cytoskeleton and cell division. Drps share structural similarities with classical dynamins but are involved in a variety of different cellular processes, primarily related to the maintenance and remodeling of organelles, and can be mainly categorized into “mediating membrane fission”, “mediating membrane fusion” and “non-membrane-dependent functions”. Proteins like Drp1 are crucial for mitochondrial division, while others like Fis1, Mfn1, and Mfn2 are involved in mitochondrial and peroxisomal fission and fusion processes, which are essential for the maintenance of mitochondrial and peroxisomal integrity and affect energy production and apoptosis. Proteins like the Mx protein family exhibit antiviral properties by interfering with viral replication or assembly, which is critical for the innate immune response to viral infections. Some other proteins are involved in the formation of tubular structures from membranes, which is crucial for the maintenance of organelle morphology, particularly in the endoplasmic reticulum and Golgi apparatus. Studies on dynamin superfamily proteins have been extensive and have significantly advanced our understanding of cellular biology, disease mechanisms, and therapeutic potential. These studies encompass a broad range of disciplines, including molecular biology, biochemistry, cell biology, genetics, and pharmacology. By comprehensively summarizing and organizing the structural features and functions of various members of the dynamin superfamily protein, this review not only deepens the understanding of its molecular mechanisms, but also provides valuable insights for clinical drug research related to human diseases, potentially driving further advancements in the field.
8.Mechanism and Current Situation of Decorporation Agents for Radionuclide Contamination in vivo
Bing-Yan KOU ; Yu-Feng GUO ; Xu-Hong DANG ; Xiao-Ming LIU
Progress in Biochemistry and Biophysics 2024;51(11):2960-2970
Radioactive contamination can occur during nuclear accidents, loss of radioactive sources and the use of radiation for photography, disinfection and detection. When the human body is accidentally contaminated by radionuclides, radionuclides can cause harm to the human body through inhalation, ingestion, direct transdermal absorption and contaminated wounds into body tissues and organs. In the treatment of radionuclide contamination in vivo, the main way is decorporation therapy, which mainly uses specific decorporation agents to selectively bind radionuclides to form stable non-toxic complexes, thereby preventing their deposition in the body, accelerating excretion, and reducing the total accumulation of radionuclides in human tissues. At present, internal radionuclide decorporation agents promote the release of radionuclides from the body mainly by stopping the entry of radionuclides into the body, ion exchange, chelation, and binding of exportants to carriers. But recent studies have found that lysosomal exocytosis, the natural clearing function of activated cells, also has a significant exportation effect. In this paper, we first introduced and analyzed the mechanism and research status of radionuclide decorporation agents that have been used in clinical practice, such as the blocking effect of potassium iodide, the ion exchange effect of Prussian blue, the chelation effect of DTPA, and the urine alkalinization effect of sodium bicarbonate. The second part introduces the mechanism and research status of promising radionuclide decorporation agents. Among them, 3,4,3-LI (1,2-HOPO) and 5-LIO (Me-3,2-HOPO) are the most promising ones and have been approved for phase I clinical trials. Others such as catecholamines, polyethyleneimine and fullerenes are also being studied with great potential. Polyethyleneimine, as a biological macromolecular chelator, has more chelating sites and stronger targeting effects than small molecule chelators, and has achieved a real breakthrough in decorporation. Fullerenes are known as “free radical sponges” with good free radical scavenging ability and antioxidant properties. In recent years, biomaterials have been widely used in the field of radionuclide decorporation, which has greatly improved the decorporation efficiency. Chitosan and pectin have shown great advantages in promoting radionuclide decorporation, chitosan can adsorb metal ions through electrostatic interaction and chelation, and can also react with free radicals to remove free radicals generated after radionuclides enter the body. Pectin can promote uranium efflux, but the exact mechanism remains unclear. Liposomes and nanomaterials as carriers enhance the intracellular drug delivery, prolong the retention time of drugs in the body, reduce adverse reactions, and make the traditional efflux enhancers glow with new vitality and have good development prospects. The last part summarizes and looks forward to the future research direction of radionuclide decorporation agents. At present, the research on decorporation agents at home and abroad is mostly stuck in the stage of drug development and drug synthesis, and few have actually entered the clinical trial stage. Therefore, the optimization of existing decorporation agents and the development of new ligands are critical. The targeting, biological safety, oral availability, and treatment needs of large-scale contamination scenarios are still the focus of attention. In addition, from the point of view of the mechanism itself, it is a new idea to promote the emission of radionuclides by activating potential channels, which can be continuously explored.
9.Analysis of the biosynthesis pathways of phenols in the leaves of Tetrastigma hemsleyanum regulated by supplemental blue light based on transcriptome sequencing
Hui-long XU ; Nan YANG ; Yu-yan HONG ; Meng-ting PAN ; Yu-chun GUO ; Shi-ming FAN ; Wen XU
Acta Pharmaceutica Sinica 2024;59(10):2864-2870
Analyze the changes in phenolic components and gene expression profiles of
10.Efficacies of proximal femoral nail anti-rotation internal fixation in different body positions on elderly unstable femoral intertrochanteric fractures
Ling-Yan ZHAO ; Hong-Bo ZHAO ; Dong-Hai YANG ; Hui LIANG ; Cheng-Ming CAO ; Xiao-Ning LIU
Journal of Regional Anatomy and Operative Surgery 2024;33(3):239-243
Objective To investigate the efficacies of proximal femoral nail anti-rotation(PFNA)internal fixation in traction bed supine position and non-traction bed lateral position in the treatment of elderly unstable femoral intertrochanteric fractures.Methods The clinical data of patients with unstable femoral intertrochanteric fractures treated with PFNA internal fixation in our hospital were retrospec-tively analyzed,41 patients received treatment in traction bed supine position were included in the supine position group,and 55 patients treated received treatment in non-traction bed lateral position were included in the lateral position group.The perioperative related indicators,surgical reduction,hip Harris score,and incidence of complications in the two groups were analyzed.Results The operation time and incision length of patients in the lateral position group were shorter than those in the supine position group,and the intraoperative blood loss and fluoroscopy times were less than those in the supine position group,with statistically significant differences(P<0.05).There was no significant difference in the anesthesia mode,blood transfusion or hospital stay of patients between the two groups(P>0.05).There was no significant difference in the incidence of postoperative complications of patients between the two groups(P>0.05).There was no significant difference in neck-shaft angle,tip-apex distance or hip Harris score of patients between the two groups(P>0.05).Conclusion PFNA internal fixation in traction bed supine position and non-traction bed lateral position have the same effect in the treatment of elderly unstable femoral intertrochanteric fractures,while the non-traction bed lateral position for treatment has more advantages in shortening operation time,decreasing intraoperative blood loss,and reducing radiation exposure.

Result Analysis
Print
Save
E-mail