1.Preparation of new hydrogels and their synergistic effects of immunochemotherapy
Wen-wen YAN ; Yan-long ZHANG ; Ming-hui CAO ; Zheng-han LIU ; Hong LEI ; Xiang-qian JIA
Acta Pharmaceutica Sinica 2025;60(2):479-487
In recent years, cancer treatment methods and means are becoming more and more diversified, and single treatment methods often have limited efficacy, while the synergistic effect of immunity combined with chemotherapy can inhibit tumor growth more effectively. Based on this, we constructed a sodium alginate hydrogel composite system loaded with chemotherapeutic agents and tumor vaccines (named SA-DOX-NA) with a view to the combined use of chemotherapeutic agents and tumor vaccines. Firstly, the tumor vaccine (named NA) degradable under acidic conditions was constructed by
2.Relationship between internalized stigma and quality of life in patients with schizophrenia::the chain mediating role of self-esteem and severity of negative symptoms
Guiju AI ; Ming JIN ; Quanming SHAO ; Yanni LIU ; Xianzhen WANG ; Hong LUO
Sichuan Mental Health 2025;38(2):172-177
BackgroundPatients with schizophrenia experience low quality of life, and internalized stigma is considered an important indicator for quality of life, while the mediating role of self-esteem and severity of negative symptoms in the relationship between internalized stigma and quality of life remains underexplored. ObjectiveTo examine the mediating role of self-esteem and severity of negative symptoms in the relationship between internalized stigma and quality of life, so as to provide references for improving their quality of life. MethodsA total of 342 patients with schizophrenia who were hospitalized in 6 hospitals in Xiangyang City, Siping City and Changchun City from April to September 2023 were included, and all of whom met the diagnostic criteria for schizophrenia according to the International Classification of Diseases, tenth edition (ICD-10). Internalized Stigma of Mental Illness Scale (ISMI), Schizophrenia Quality of Life Scale (SQLS), Self-Esteem Scale (SES) and negative symptom subscale of Positive and Negative Symptom Scale (PANSS) were administered to all patients. Spearman correlation analysis was adopted to determine correlations between the different scales. A structural equation modeling was constructed using Amos 28.0, and Bootstrap method was employed to verify the mediating effect of self-esteem and negative symptom severity in the association between internalized stigma and quality of life. ResultsA total of 309 patients (90.35%) completed questionnaires in this study. The ISMI score of schizophrenia patients was positively correlated with both SQLS score and the PANSS negative symptom subscale score (r=0.612, 0.492, P<0.01), while was negatively correlated with SES score (r=-0.513, P<0.01). The SQLS score was negatively associated with the SES score (r=-0.555, P<0.01) and positively associated with PANSS negative symptom subscale score (r=0.672, P<0.01). The SES score was negatively correlated with PANSS negative symptom subscale score (r=-0.433, P<0.01).The total effect value of internalized stigma on quality of life was 0.746 (95% CI: 0.680~0.806). Self-esteem and severity of negative symptoms independently mediated the relationship between internalized stigma and quality of life, and the indirect effect values were 0.151 (95% CI: 0.062~0.254) and 0.126 (95% CI: 0.047~0.205), accounting for 20.24% and 16.89% of the total effect, respectively. In addition, a chained mediation effect of self-esteem and quality of life was also demonstrated, the indirect effect value was 0.102 (95% CI: 0.049~0.165), accounting for 13.67% of the total effect). ConclusionInternalized stigma in patients with schizophrenia patients can not only directly affect the quality of life, but also indirectly affect the quality of life of patients through either separate or chained mediation of self-esteem and the severity of negative symptoms. [Funded by Hubei Provincial Undergraduate Innovation and Entrepreneurship Project (number, S202410519027)]
3.Terms Related to The Study of Biomacromolecular Condensates
Ke RUAN ; Xiao-Feng FANG ; Dan LI ; Pi-Long LI ; Yi LIN ; Zheng WANG ; Yun-Yu SHI ; Ming-Jie ZHANG ; Hong ZHANG ; Cong LIU
Progress in Biochemistry and Biophysics 2025;52(4):1027-1035
Biomolecular condensates are formed through phase separation of biomacromolecules such as proteins and RNAs. These condensates exhibit liquid-like properties that can futher transition into more stable material states. They form complex internal structures via multivalent weak interactions, enabling precise spatiotemporal regulations. However, the use of inconsistent and non-standardized terminology has become increasingly problematic, hindering academic exchange and the dissemination of scientific knowledge. Therefore, it is necessary to discuss the terminology related to biomolecular condensates in order to clarify concepts, promote interdisciplinary cooperation, enhance research efficiency, and support the healthy development of this field.
4.Literature analysis of the differences in the occurrence of urinary epithelial carcinoma after kidney transplantation between northern and southern China
Pengjie WU ; Runhua TANG ; Dong WEI ; Yaqun ZHANG ; Hong MA ; Bin JIN ; Xin CHEN ; Jianlong WANG ; Ming LIU ; Yaoguang ZHANG ; Ben WAN ; Jianye WANG
Journal of Modern Urology 2025;30(5):432-437
Objective: To investigate the regional differences in the incidence of urothelial carcinoma among kidney transplant recipients between northern and southern China,so as to provide reference for early diagnosis of this disease. Methods: A comprehensive search was conducted across multiple databases,including CNKI,Wanfang,CBM,and PubMed,using the keywords “kidney transplantation” and “tumor” to collect clinical data from qualified kidney transplant centers.The latest and most complete literature data published by 17 transplant centers in northern China and 14 in southern China were included.Statistical analyses were performed to compare the incidence of post-transplant urothelial carcinoma and non-urothelial malignancies. Results: A total of 37 475 kidney transplant recipients were included,among whom 837 (2.23%) developed post-transplant malignancies,including urothelial carcinoma (366/837,43.73%),non-urothelial carcinoma (444/837,53.05%),and malignancies with unspecified pathology (27/837,3.23%).The incidence of malignancies was significantly higher in northern China than in southern China [(2.82±1.39)% vs. (1.67±0.83)%,P=0.011],with a particularly pronounced difference in the incidence of urothelial carcinoma [(1.68±1.12)% vs. (0.32±0.32)%,P<0.001].No significant difference was observed in the incidence of non-urothelial carcinoma between the two regions [(1.11±0.56)% vs. (1.35±0.65)%,P=0.279].Additionally,female transplant recipients exhibited a higher incidence of malignancies than males in both regions (southern China:2.38% vs. 1.80%; northern China:8.93% vs. 2.52%). Conclusion: The incidence of urothelial carcinoma following kidney transplantation is significantly higher in northern China than in southern China,underscoring the importance of implementing regular tumor screening for kidney transplant recipients,particularly for female patients in northern China,to facilitate early diagnosis and timely intervention.
5.Enhancement of tropane alkaloids biosynthesis in Atropa belladonna hariy root by overexpression of HnCYP82M3 and DsTRI genes
De-hui MU ; Yan-hong LIU ; Piao-piao CHEN ; Ai-juan TAN ; Bing-nan MA ; Hang PAN ; Ming-sheng ZHANG ; Wei QIANG
Acta Pharmaceutica Sinica 2024;59(3):775-783
Tropane alkaloids (TAs) are a class of anticholinergic drugs widely used in clinical practice and mainly extracted from plant, among which
6.Mechanism of salvianolic acid B protecting H9C2 from OGD/R injury based on mitochondrial fission and fusion
Zi-xin LIU ; Gao-jie XIN ; Yue YOU ; Yuan-yuan CHEN ; Jia-ming GAO ; Ling-mei LI ; Hong-xu MENG ; Xiao HAN ; Lei LI ; Ye-hao ZHANG ; Jian-hua FU ; Jian-xun LIU
Acta Pharmaceutica Sinica 2024;59(2):374-381
This study aims to investigate the effect of salvianolic acid B (Sal B), the active ingredient of Salvia miltiorrhiza, on H9C2 cardiomyocytes injured by oxygen and glucose deprivation/reperfusion (OGD/R) through regulating mitochondrial fission and fusion. The process of myocardial ischemia-reperfusion injury was simulated by establishing OGD/R model. The cell proliferation and cytotoxicity detection kit (cell counting kit-8, CCK-8) was used to detect cell viability; the kit method was used to detect intracellular reactive oxygen species (ROS), total glutathione (t-GSH), nitric oxide (NO) content, protein expression levels of mitochondrial fission and fusion, apoptosis-related detection by Western blot. Mitochondrial permeability transition pore (MPTP) detection kit and Hoechst 33342 fluorescence was used to observe the opening level of MPTP, and molecular docking technology was used to determine the molecular target of Sal B. The results showed that relative to control group, OGD/R injury reduced cell viability, increased the content of ROS, decreased the content of t-GSH and NO. Furthermore, OGD/R injury increased the protein expression levels of dynamin-related protein 1 (Drp1), mitofusions 2 (Mfn2), Bcl-2 associated X protein (Bax) and cysteinyl aspartate specific proteinase 3 (caspase 3), and decreased the protein expression levels of Mfn1, increased MPTP opening level. Compared with the OGD/R group, it was observed that Sal B had a protective effect at concentrations ranging from 6.25 to 100 μmol·L-1. Sal B decreased the content of ROS, increased the content of t-GSH and NO, and Western blot showed that Sal B decreased the protein expression levels of Drp1, Mfn2, Bax and caspase 3, increased the protein expression level of Mfn1, and decreased the opening level of MPTP. In summary, Sal B may inhibit the opening of MPTP, reduce cell apoptosis and reduce OGD/R damage in H9C2 cells by regulating the balance of oxidation and anti-oxidation, mitochondrial fission and fusion, thereby providing a scientific basis for the use of Sal B in the treatment of myocardial ischemia reperfusion injury.
7.Improvement effect of curcumin combined with fecal bacteria transplantation on mice with ulcerative colities induced by DSS
Yang LIU ; Ming LU ; Wen HONG ; Kelin HUANG
Journal of Jilin University(Medicine Edition) 2024;50(1):136-142
Objective:To discuss the improvement effect of curcumin combined with fecal bacteria transplantation on the mice with dextran sulfate sodium(DSS)-induced ulcerative colitis(UC),and to clarify the related mechanism.Methods:Fifty mice were randomly divided into control,model,curcumin,fecal bacteria transplantation,and combination groups.Except for the mice in control group(given distilled water),the mice in the other groups were given distilled water containing 2%DSS to establish the UC models.The mice in curcumin group were gavaged with 0.4 mL of 60 mg·kg-1 curcumin solution once per day for 10 d;the mice in fecal bacteria transplantation group underwent enema with 0.2 mL of fecal bacteria suspension once per day for 10 d;the mice in combination group received the enema of 0.2 mL fecal bacteria suspension and gavaged with 0.4 mL of 60 mg·kg-1 curcumin solution.At the end of the experiment,the disease activity index(DAI)and colon macroscopic damage index(CDMI)of the mice in various groups were calculated;the morphology of colon tissue of the mice in various groups was detected by HE staining;the levels of interleukin(IL)-1β,tumor necrosis factor-α(TNF-α),IL-4,and IL-10 in colon tissue of the mice in various groups were detected by enzyme-linked immunosorbent assay(ELISA)method;the expression levels of occludin and zonula occludens-1(ZO-1)mRNA and proteins in colon tissue of the mice in various groups were detected by real-time fluorescence quantitative(RT-qPCR)and Western blotting methods.Results:The intestinal mucosal epithelial structure of the mice in control group was intact and continuous with regular glandular arrangement and without inflammatory cell infiltration or ulceration;the intestinal mucosal epithelial structure of the mice in model group exhibited loss of colonic mucosal epithelium,disordered glandular arrangement,reduced goblet cells,congestion and edema in mucosal and submucosal layers,and extensive infiltration of inflammatory cells with widespread small ulcers;the intestinal mucosal epithelial structure of the mice in curcumin,fecal bacteria transplantation,and combination groups exhibited relatively intact colonic mucosal epithelial structures with reduced inflammatory cell infiltration and ameliorated mucosal and submucosal congestion and edema.Compared with control group,the DAI and CDMI of the mice in model group were increased(P<0.05),the levels of IL-1β and TNF-α were increased(P<0.05),the levels of IL-4 and IL-10 were decreased(P<0.05),and the expression levels of occludin and ZO-1 mRNA and proteins were decreased(P<0.05);compared with model group,the DAI and CDMI of the mice in curcumin,fecal bacteria transplantation,and combination groups were decreased(P<0.05),the levels of IL-1β and TNF-α were decreased(P<0.05),the levels of IL-4 and IL-10 were increased(P<0.05),and the expression levels of occludin and ZO-1 mRNA and proteins were increased(P<0.05).Compared with curcumin group and fecal bacteria transplantation group,the DAI and CDMI of the mice in combination group were decreased(P<0.05),the levels of IL-1β and TNF-α were decreased(P<0.05),the levels of IL-4 and IL-10 were increased(P<0.05),and the expression levels of occludin and ZO-1 mRNA and proteins were increased(P<0.05).Conclusion:Curcumin combined with fecal bacteria transplantation can ameliorate the pathological damage in colonic tissue of the UC mice,inhibit the secretion of inflammatory factors,and promote the repaiment of intestin mucosa.
8.Nanomaterial-based Therapeutics for Biofilm-generated Bacterial Infections
Zhuo-Jun HE ; Yu-Ying CHEN ; Yang ZHOU ; Gui-Qin DAI ; De-Liang LIU ; Meng-De LIU ; Jian-Hui GAO ; Ze CHEN ; Jia-Yu DENG ; Guang-Yan LIANG ; Li WEI ; Peng-Fei ZHAO ; Hong-Zhou LU ; Ming-Bin ZHENG
Progress in Biochemistry and Biophysics 2024;51(7):1604-1617
Bacterial biofilms gave rise to persistent infections and multi-organ failure, thereby posing a serious threat to human health. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure, high adhesiveness and low drug permeability, and had been found in many human organs or tissues, such as the brain, heart, liver, spleen, lungs, kidneys, gastrointestinal tract, and skeleton. By releasing pro-inflammatory bacterial metabolites including endotoxins, exotoxins and interleukin, biofilms stimulated the body’s immune system to secrete inflammatory factors. These factors triggered local inflammation and chronic infections. Those were the key reason for the failure of traditional clinical drug therapy for infectious diseases.In order to cope with the increasingly severe drug-resistant infections, it was urgent to develop new therapeutic strategies for bacterial-biofilm eradication and anti-bacterial infections. Based on the nanoscale structure and biocompatible activity, nanobiomaterials had the advantages of specific targeting, intelligent delivery, high drug loading and low toxicity, which could realize efficient intervention and precise treatment of drug-resistant bacterial biofilms. This paper highlighted multiple strategies of biofilms eradication based on nanobiomaterials. For example, nanobiomaterials combined with EPS degrading enzymes could be used for targeted hydrolysis of bacterial biofilms, and effectively increased the drug enrichment within biofilms. By loading quorum sensing inhibitors, nanotechnology was also an effective strategy for eradicating bacterial biofilms and recovering the infectious symptoms. Nanobiomaterials could intervene the bacterial metabolism and break the bacterial survival homeostasis by blocking the uptake of nutrients. Moreover, energy-driven micro-nano robotics had shown excellent performance in active delivery and biofilm eradication. Micro-nano robots could penetrate physiological barriers by exogenous or endogenous driving modes such as by biological or chemical methods, ultrasound, and magnetic field, and deliver drugs to the infection sites accurately. Achieving this using conventional drugs was difficult. Overall, the paper described the biological properties and drug-resistant molecular mechanisms of bacterial biofilms, and highlighted therapeutic strategies from different perspectives by nanobiomaterials, such as dispersing bacterial mature biofilms, blocking quorum sensing, inhibiting bacterial metabolism, and energy driving penetration. In addition, we presented the key challenges still faced by nanobiomaterials in combating bacterial biofilm infections. Firstly, the dense structure of EPS caused biofilms spatial heterogeneity and metabolic heterogeneity, which created exacting requirements for the design, construction and preparation process of nanobiomaterials. Secondly, biofilm disruption carried the risk of spread and infection the pathogenic bacteria, which might lead to other infections. Finally, we emphasized the role of nanobiomaterials in the development trends and translational prospects in biofilm treatment.
9.Study on The Mechanism of Sinomenine Hydrochloride Induced Fibroblast Apoptosis in Rabbits with Adhesive Knee Ankylosis
Xin-Ju HOU ; Hong-Feng LEI ; Yong CHEN ; Fu-Xi LI ; Jing-Ning SUN ; Jia-Ming LIU ; Hong-Mei MA
Progress in Biochemistry and Biophysics 2024;51(4):959-968
ObjectiveThis study aimed to observe the impact of sinomenine hydrochloride on the proliferation of fibroblasts and the mRNA expression of related genes in knee joint adhesion and contracture in rabbits. Additionally, we sought to explore its potential mechanisms in combating knee joint adhesion and contracture. MethodsFibroblasts were cultured in vitro, and experimental groups with varying concentrations of sinomenine hydrochloride were established alongside a control group. Cell proliferation was assessed using the CCK-8 assay. Changes in the mRNA expression of fibroblast-related genes following sinomenine hydrochloride treatment were evaluated using RT-qPCR. The impact of the drug on serum levels of inflammatory cytokines was determined using the ELISA method, and the expression of related proteins was assessed using Western blot. ResultsSinomenine hydrochloride was found to inhibit fibroblast viability, with viability decreasing as the concentration of sinomenine hydrochloride increased. The effects of sinomenine hydrochloride in all experimental groups were highly significant (P<0.05). At the mRNA expression level, compared to the control group, sinomenine hydrochloride led to a significant downregulation of inflammatory cytokines in all groups (P<0.05). Additionally, the expression levels of apoptosis-related proteins significantly increased, while Bcl-2 mRNA expression decreased (P<0.05). The mRNA expression levels of the PI3K/mTOR/AKT3 signaling pathway also decreased (P<0.05). At the protein expression level, in comparison to the control group, the levels of inflammatory cytokines IL-6, IL-8, IL-1β, and TGF-β were significantly downregulated in the middle and high-dose sinomenine hydrochloride groups (P<0.05). The expression levels of cleaved-PARP, cleaved caspase-3/7, and Bax increased and were positively correlated with the dose, while the expression levels of the anti-apoptotic protein Bcl-2 and the PI3K/AKT3/mTOR signaling pathway were negatively correlated with the dose. Sinomenine hydrochloride exhibited a significant inhibitory effect on the viability of rabbit knee joint fibroblasts, which may be associated with the downregulation of inflammatory cytokines IL-6, IL-8, and IL-1β, promotion of apoptosis-related proteins cleaved-PARP, cleaved caspase-3/7, and Bax, suppression of Bcl-2 expression, and inhibition of gene expression in the downstream PI3K/AKT3/mTOR signaling pathway. ConclusionSinomenine hydrochloride can inhibit the inflammatory response of fibroblasts in adhesive knee joints and accelerate fibroblast apoptosis. This mechanism may offer a novel approach to improving and treating knee joint adhesion.
10.Effects of Electroacupuncture on Urodynamics and Expression of ERK/CREB/Bcl-2 Pathway in Spinal Cord of Rats with Neurogenic Bladder after Suprasacral Spinal Cord Injury
Ming XU ; Kun AI ; Yue ZHUO ; Qiong LIU ; Xiaomeng LIU ; Ya LI ; Xiaoyuan LUO ; Hong ZHANG
Chinese Journal of Information on Traditional Chinese Medicine 2024;31(4):100-105
Objective To observe the effects of electroacupuncture at"Ciliao","Zhongji","Sanyinjiao"and"Dazhui"on urodynamics and expression of ERK/CREB/Bcl-2 pathway in spinal cord tissue of neurogenic bladder rats after suprasacral spinal cord injury.Methods Sixty female SD rats randomly selected 24 and divided into blank group and sham-operation group(12 rats in each group),the remaining 36 rats were subjected to surgical modeling.After modeling,rats were randomly divided into the model group and the electroacupuncture group,with 12 rats in each group.The electroacupuncture group received unilateral electroacupuncture stimulation at acupoints"Ciliao","Zhongji","Sanyinjiao",and"Dazhui"for 30 minutes each time,once a day,for 7 consecutive days.After administration,urodynamic testing was performed,HE staining was used to observe the morphology of bladder detrusor tissue,TUNEL method was used to detected apoptosis in spinal cord tissue,Western blot was used to detected expressions of p-ERK1/2,p-CREB,p-p90Rsk,CRE,Bcl-2,and Bax proteins in spinal cord tissue.Results Compared with the sham-operation group,the basal pressure,maximum pressure,and leakage point pressure of the bladder in the model group increased significantly(P<0.01),while the maximum capacity and compliance of the bladder decreased significantly(P<0.01);the structure of bladder smooth muscle cells was severely damaged and disorderly arranged,accompanied by a large amount of inflammatory cell infiltration;the apoptosis rate of spinal cord tissue cells significantly increased(P<0.01),and the expressions of p-ERK1/2,p-p90Rsk,p-CREB,CRE,and Bcl-2 proteins in spinal cord tissue were significantly decreased,while the expression of Bax protein significantly increased(P<0.01).Compared with the model group,the basal pressure,maximum pressure,and leakage point pressure of the bladder in the electroacupuncture group decreased significantly(P<0.05),while the maximum capacity and compliance of the bladder increased significantly(P<0.05,P<0.01);the integrity of bladder smooth muscle cells was enhanced,the degree of cell edema was reduced,and inflammatory cell infiltration was reduced;the apoptosis rate of spinal cord tissue cells was significantly reduced(P<0.05),and the expressions of p-ERK1/2,p-p90Rsk,p-CREB,CRE,and Bcl-2 proteins in spinal cord tissue significantly increased,while the expression of Bax protein was significantly decreased(P<0.05,P<0.01).Conclusion Electroacupuncture can promote the repair of bladder detrusor tissue in rats with neurogenic bladder model after suprasacral spinal cord injury,increase the maximum capacity and compliance of the bladder,alleviate the high pressure state in the bladder,and its mechanism is related to activating the ERK/CREB/Bcl-2 pathway,reducing secondary apoptosis of damaged neurons,effectively improving bladder innervation,and protecting bladder function.

Result Analysis
Print
Save
E-mail