1.Research on compaction behavior of traditional Chinese medicine compound extract powders based on unsupervised learning
Ying FANG ; Yan-long HONG ; Xiao LIN ; Lan SHEN ; Li-jie ZHAO
Acta Pharmaceutica Sinica 2025;60(2):506-513
Direct compression is an ideal method for tablet preparation, but it requires the powder's high functional properties. The functional properties of the powder during compression directly affect the quality of the tablet. 15 parameters such as Py, FES-8KN,
2.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
3.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
4.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
5.Diagnostic Techniques and Risk Prediction for Cardiovascular-kidney-metabolic (CKM) Syndrome
Song HOU ; Lin-Shan ZHANG ; Xiu-Qin HONG ; Chi ZHANG ; Ying LIU ; Cai-Li ZHANG ; Yan ZHU ; Hai-Jun LIN ; Fu ZHANG ; Yu-Xiang YANG
Progress in Biochemistry and Biophysics 2025;52(10):2585-2601
Cardiovascular disease (CVD), chronic kidney disease (CKD), and metabolic disorders are the 3 major chronic diseases threatening human health, which are closely related and often coexist, significantly increasing the difficulty of disease management. In response, the American Heart Association (AHA) proposed a novel disease concept of “cardiovascular-kidney-metabolic (CKM) syndrome” in October 2023, which has triggered widespread concern about the co-treatment of heart and kidney diseases and the prevention and treatment of metabolic disorders around the world. This review posits that effectively managing CKM syndrome requires a new and multidimensional paradigm for diagnosis and risk prediction that integrates biological insights, advanced technology and social determinants of health (SDoH). We argue that the core pathological driver is a “metabolic toxic environment”, fueled by adipose tissue dysfunction and characterized by a vicious cycle of systemic inflammation and oxidative stress, which forms a common pathway to multi-organ injury. The at-risk population is defined not only by biological characteristics but also significantly impacted by adverse SDoH, which can elevate the risk of advanced CKM by a factor of 1.18 to 3.50, underscoring the critical need for equity in screening and care strategies. This review systematically charts the progression of diagnostic technologies. In diagnostics, we highlight a crucial shift from single-marker assessments to comprehensive multi-marker panels. The synergistic application of traditional biomarkers like NT-proBNP (reflecting cardiac stress) and UACR (indicating kidney damage) with emerging indicators such as systemic immune-inflammation index (SII) and Klotho protein facilitates a holistic evaluation of multi-organ health. Furthermore, this paper explores the pivotal role of non-invasive monitoring technologies in detecting subclinical disease. Techniques like multi-wavelength photoplethysmography (PPG) and impedance cardiography (ICG) provide a real-time window into microcirculatory and hemodynamic status, enabling the identification of early, often asymptomatic, functional abnormalities that precede overt organ failure. In imaging, progress is marked by a move towards precise, quantitative evaluation, exemplified by artificial intelligence-powered quantitative computed tomography (AI-QCT). By integrating AI-QCT with clinical risk factors, the predictive accuracy for cardiovascular events within 6 months significantly improves, with the area under the curve (AUC) increasing from 0.637 to 0.688, demonstrating its potential for reclassifying risk in CKM stage 3. In the domain of risk prediction, we trace the evolution from traditional statistical tools to next-generation models. The new PREVENT equation represents a major advancement by incorporating key kidney function markers (eGFR, UACR), which can enhance the detection rate of CKD in primary care by 20%-30%. However, we contend that the future lies in dynamic, machine learning-based models. Algorithms such as XGBoost have achieved an AUC of 0.82 for predicting 365-day cardiovascular events, while deep learning models like KFDeep have demonstrated exceptional performance in predicting kidney failure risk with an AUC of 0.946. Unlike static calculators, these AI-driven tools can process complex, multimodal data and continuously update risk profiles, paving the way for truly personalized and proactive medicine. In conclusion, this review advocates for a paradigm shift toward a holistic and technologically advanced framework for CKM management. Future efforts must focus on the deep integration of multimodal data, the development of novel AI-driven biomarkers, the implementation of refined SDoH-informed interventions, and the promotion of interdisciplinary collaboration to construct an efficient, equitable, and effective system for CKM screening and intervention.
6. Advances in relationship between pyroptosis and pulmonary arterial hypertension and therapeutic drugs
Qian YAN ; Yang SUN ; Jun-Peng LONG ; Jiao YAO ; Yu-Ting LIN ; Song-Wei YANG ; Yan-Tao YANG ; Gang PEI ; Qi-Di AI ; Nai-Hong CHEN ; Qian YAN ; Yang SUN ; Jun-Peng LONG ; Jiao YAO ; Yu-Ting LIN ; Song-Wei YANG ; Yan-Tao YANG ; Gang PEI ; Qi-Di AI ; Nai-Hong CHEN ; Sha-Sha LIU ; Nai-Hong CHEN
Chinese Pharmacological Bulletin 2024;40(1):25-30
Pyroptosis is the programmed death of cells accompanied by an inflammatory response and is widely involved in the development of a variety of diseases, such as infectious diseases, cardiovascular diseases, and neurodegeneration. It has been shown that cellular scorching is involved in the pathogenesis of pulmonary arterial hypertension ( PAH) in cardiovascular diseases. Patients with PAH have perivascular inflammatory infiltrates in lungs, pulmonary vasculopathy exists in an extremely inflam-matory microenvironment, and pro-inflammatory factors in cellular scorching drive pulmonary vascular remodelling in PAH patients. This article reviews the role of cellular scorch in the pathogenesis of PAH and the related research on drugs for the treatment of PAH, with the aim of providing new ideas for clinical treatment of PAH.
7.The role of glucose metabolism reprogramming and its targeted therapeutic agents in inflammation-related diseases
Yi WEI ; Xiao-man JIANG ; Shi-lin XIA ; Jing XU ; Ya LI ; Ran DENG ; Yan WANG ; Hong WU
Acta Pharmaceutica Sinica 2024;59(3):511-519
Cells undergo glucose metabolism reprogramming under the influence of the inflammatory microenvironment, changing their primary mode of energy supply from oxidative phosphorylation to aerobic glycolysis. This process is involved in all stages of inflammation-related diseases development. Glucose metabolism reprogramming not only changes the metabolic pattern of individual cells, but also disrupts the metabolic homeostasis of the body microenvironment, which further promotes aerobic glycolysis and provides favourable conditions for the malignant progression of inflammation-related diseases. The metabolic enzymes, transporter proteins, and metabolites of aerobic glycolysis are all key signalling molecules, and drugs can inhibit aerobic glycolysis by targeting these specific key molecules to exert therapeutic effects. This paper reviews the impact of glucose metabolism reprogramming on the development of inflammation-related diseases such as inflammation-related tumours, rheumatoid arthritis and Alzheimer's disease, and the therapeutic effects of drugs targeting glucose metabolism reprogramming on these diseases.
8.Epidemiological characteristics and diagnosis of imported Plasmodium malariae and Plasmodium ovale malaria cases in five provinces of China from 2014 to 2021
Wen LIN ; Duoquan WANG ; Lingcong SUN ; Tao ZHANG ; Hui YAN ; Wei RUAN ; Ying LIU ; Dongni WU ; Shizhu LI ; Jing XIA ; Hong ZHU
Chinese Journal of Schistosomiasis Control 2024;36(4):407-411
Objective To investigate the epidemiological characteristics and diagnosis of imported Plasmodium malariae and P. ovale malaria cases in Anhui Province, Hubei Province, Zhejiang Province, Guangxi Zhuang Autonomous Region and Henan Province from 2014 to 2021, so as to provide insights into malaria control in these five provinces. Methods All data pertaining to malaria cases reported in five provinces of China were captured from Chinese Disease Control and Prevention Information System from 2014 to 2021, and the epidemiological characteristics of imported P. malariae and P. ovale malaria cases were analysed using a descriptive epidemiological method. The duration from onset of malaria to initial diagnosis, duration from initial diagnosis to definitive diagnosis, institutions of initial and definitive diagnoses, and proportion of correct malaria diagnosis at initial diagnosis were statistically analyzed. Results A total of 1 223 imported P. malariae and P. ovale malaria cases were reported in Anhui Province, Hubei Province, Zhejiang Province, Henan Province and Guangxi Zhuang Autonomous Region from 2014 to 2021, there were 158 P. malariae malaria cases (12.92%) and 1 065 P. ovale malaria cases (87.08%). Totally 98.53% (1 205/1 223) of the imported malaria cases were from Africa, with Angola (18.99%, 30/158), Nigeria (11.39%,18/158), Cameroon (10.76%, 17/158), Ghana (10.13%, 16/158) and the Democratic Republic of the Congo (10.13%,16/158) as predominant countries where P. malariae malaria cases were from, and Ghana (23.19%, 247/1 065), Cameroon (14.74%, 157/1 065), Nigeria (9.39%, 100/1 065) and Angola (6.95%, 74/1 065) as predominant countries where P. ovale malaria cases were from. There were significant differences in the duration from onset of malaria to initial diagnosis (χ2 = 27.673, P = 0.000) and duration from initial diagnosis to definitive diagnosis of P. malariae and P. ovale malaria cases (χ2 = 29.808, P = 0.000), and the proportions of correct initial diagnosis of P. malariae and P. ovale malaria cases were 38.61% (61/158) and 56.53% (602/1 065). There were 74.69% (118/158) of P. malariae malaria cases with definitive diagnosis in county-, city-, and province-level medical institutions, and 79.25% (844/1 065) of P. ovale malaria cases with definitive diagnosis in county- and city-level medical institutions and county-level centers for disease control and prevention. Conclusions The imported P. malariae and P. ovale malaria cases in Anhui Province, Hubei Province, Zhejiang Province, Henan Province and Guangxi Zhuang Autonomous Region from 2014 to 2021 were mainly returned from Africa and the proportion of correct diagnosis of P. malariae and P. ovale malaria was low at initial diagnosis. Persistent improvements in the diagnostic capability of malaria are required in medical institutions.
9.Targeting platelet-immune cell interaction as a new strategy for post-myocardial infarction current evidence and future prospective
Lin-hong HAN ; Yu-han ZHAO ; Xiao-ying WANG ; Yan ZHU
Acta Pharmaceutica Sinica 2024;59(6):1519-1526
Myocardial infarction (MI) is a fatal disease with high morbidity and mortality. Platelets are major players of thrombosis and inflammation after acute myocardial infarction. There is growing evidence that platelets mediate inflammation, participate in dead tissue removal and heart remodeling through direct or indirect interactions with immune cells post-MI. This paper reviews the type of interactions between platelets and immune cells after myocardial infarction, and summarizes the mechanism of platelet interaction with different immune cells, such as neutrophils, monocytes, and macrophages, to mediate cardiac injury and repair through up-regulation of surface receptors and release of immune regulatory mediators post-MI. Therapeutic strategies targeting the interaction between platelets and immune cells for myocardial infarction is also presented, to provide reference for the exploration of new immune therapy targets for myocardial infarction.
10.Sappanone A attenuates renal ischemia-reperfusion injury in rats by regulating JNK signal pathway
Tai-wei JIN ; Xiao-ning GAO ; Wen-lin SONG ; Yan-yan WANG ; Lin SUN ; Ling-hong LU
Acta Pharmaceutica Sinica 2024;59(6):1639-1646
This study aimed to investigate the role and mechanism of sappanone A (SA) in regulating renal ischemia-reperfusion injury (IRI) in rats. The animal experiment has been approved by the Ethics Committee of Suzhou Wujiang District Children's Hospital (approval number: 2022010). First, hematoxylin-eosin (H&E) staining was used to evaluate the effects of SA on IRI, and renal damage was scored. Serum creatinine (SCr), blood urea nitrogen (BUN) and cystatin C (Cystatin C) were analyzed. The effect of sappanone A on the apoptosis of renal tubular epithelial cells induced by IRI was analyzed by TUNEL staining. Protein expression levels of p-JNK/JNK, p-ERK/ERK, Bcl2, Bax and cleaved-caspase 3 in renal tissues were detected by Western blot. Finally, H&E staining, serological analysis, TUNEL staining and Western blot were used to determine whether JNK activator anisomycin could reverse the effect of SA on IRI in rats. The results showed SA significantly reduced the renal tubule injury caused by ischemia-reperfusion, and decreased the level of SCr, BUN and Cys C in serum. TUNEL staining showed that SA significantly reduced the apoptosis of renal tubular epithelial cells induced by IRI. Western blot analysis of kidney tissue showed that SA significantly promoted the expression of apoptosis inhibiting protein Bcl2 and inhibited the expression of apoptosis-promoting proteins Bax and cleaved-caspase 3. Further analysis elucidated that SA did not affect the phosphorylation of ERK but decreased the phosphorylation of JNK. Finally, H&E staining, serological analysis, TUNEL staining and Western blot confirmed that JNK activator anisomycin could reverse the alleviating effect of SA on IRI in rats. The above findings suggest that SA could alleviate IRI in rats by inhibiting JNK phosphorylation.

Result Analysis
Print
Save
E-mail