1.Multidimensional optimization strategies and practical effects of prescription pre-review system
Guangming GAO ; Tianjiao LIU ; Na XU ; Jing LIANG ; Xiangju SUN ; Zhanguo ZHU ; Hong YAN
China Pharmacy 2025;36(14):1797-1801
		                        		
		                        			
		                        			OBJECTIVE To optimize the prescription pre-review system in our hospital and evaluate its application effects. METHODS Aiming at the problems of imperfect rule base and high false positive rate in the early operation of the system, optimization measures were taken, including improving the content of the rule base, adjusting the interception level and prompt mode, refining the working model of prescription review pharmacists, and strengthening clinical communication. A retrospective cohort study was conducted, with prescription data from June to December 2023 (before optimization) as the control group and June to December 2024 (after optimization) as the observation group. Through inter group comparative analysis, the actual effect of optimizing the prescription pre-approval system was evaluated. RESULTS The prescription qualified rate increased from (82.51± 4.04)% before optimization to (90.98±1.55)% after optimization; the false positive rate decreased from (20.87±1.64)% before optimization to (7.41±2.04)% after optimization. The monthly range of prescription qualified rate narrowed from 10.24% to 4.11%, and the coefficient of variation decreased from 4.92% to 1.73%. The monthly range of false positive rate slightly increased from 4.40% to 5.34%, the coefficient of variation rose from 8.32% to 26.18%. CONCLUSIONS Through multi-dimensional optimizations of the prescription pre-review system in our hospital, its prescription review efficiency has been significantly enhanced, the quality of prescriptions has steadily improved, and the accuracy of reviews has notably improved.
		                        		
		                        		
		                        		
		                        	
2.Changes and Trends in the microbiological-related standards in the Chinese Pharmacopoeia 2025 Edition
FAN Yiling ; ZHU Ran ; YANG Yan ; JIANG Bo ; SONG Minghui ; WANG Jing ; LI Qiongqiong ; LI Gaomin ; WANG Shujuan ; SHAO Hong ; MA Shihong ; CAO Xiaoyun ; HU Changqin ; MA Shuangcheng, ; YANG Meicheng
Drug Standards of China 2025;26(1):093-098
		                        		
		                        			
		                        			Objective: To systematically analyze the revisions content and technological development trends of microbiological standards in the Chinese Pharmacopoeia (ChP) 2025 Edition, and explore its novel requirements in risk-based pharmaceutical product lifecycle management. 
Methods: A comprehensive review was conducted on 26 microbiological-related standards to summarize the revision directions and scientific implications from perspectives including the revision overview, international harmonization of microbiological standards, risk-based quality management system, and novel tools and methods with Chinese characteristics. 
Results: The ChP 2025 edition demonstrates three prominent features in microbiological-related standards: enhanced international harmonization, introduced emerging molecular biological technologies, and established a risk-based microbiological quality control system. 
Conclusion: The new edition of the Pharmacopoeia has systematically constructed a microbiological standard system, which significantly improves the scientificity, standardization and applicability of the standards, providing a crucial support for advancing the microbiological quality control in pharmaceutical industries of China.
		                        		
		                        		
		                        		
		                        	
3.Study on anti-atherosclerosis mechanism of blood components of Guanxin Qiwei tablets based on HPLC-Q-Exactive-MS/MS and network pharmacology
Yuan-hong LIAO ; Jing-kun LU ; Yan NIU ; Jun LI ; Ren BU ; Peng-peng ZHANG ; Yue KANG ; Yue-wu WANG
Acta Pharmaceutica Sinica 2025;60(2):449-458
		                        		
		                        			
		                        			 The analysis presented here is based on the blood components of Guanxin Qiwei tablets, the key anti-atherosclerosis pathway of Guanxin Qiwei tablets was screened by network pharmacology, and the anti-atherosclerosis mechanism of Guanxin Qiwei tablets was clarified and verified by cell experiments. HPLC-Q-Exactive-MS/MS technique was used to analyze the components of Guanxin Qiwei tablets into blood, to determine the precise mass charge ratio of the compounds, and to conduct a comprehensive analysis of the components by using secondary mass spectrometry fragments and literature comparison. Finally, a total of 42 components of Guanxin Qiwei tablets into blood were identified. To better understand the interactions, we employed the Swiss Target Prediction database to predict the associated targets. Atherosclerosis (AS) disease targets were searched in disease databases Genecard, OMIM and Disgent, and 181 intersection targets of disease targets and component targets were obtained by Venny 2.1.0 software. Protein interactions were analyzed by String database. The 32 core targets were selected by Cytscape software. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed in DAVID database. It was found that the anti-atherosclerosis pathways of Guanxin Qiwei tablets mainly include lipid metabolism and atherosclerosis and AGE-RAGE signaling pathway in diabetic complications and other signal pathways. The core targets and the core compounds were interlinked, and it was found that cryptotanshinone and tanshinone ⅡA in Guanxin Qiwei tablets were well bound to TNF, PPAR
		                        		
		                        	
4.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
		                        		
		                        			 Background/Aims:
		                        			Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation. 
		                        		
		                        			Methods:
		                        			The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation. 
		                        		
		                        			Results:
		                        			MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs. 
		                        		
		                        			Conclusions
		                        			In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs. 
		                        		
		                        		
		                        		
		                        	
5.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
		                        		
		                        			 Background/Aims:
		                        			Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation. 
		                        		
		                        			Methods:
		                        			The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation. 
		                        		
		                        			Results:
		                        			MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs. 
		                        		
		                        			Conclusions
		                        			In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs. 
		                        		
		                        		
		                        		
		                        	
6.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
		                        		
		                        			 Background/Aims:
		                        			Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation. 
		                        		
		                        			Methods:
		                        			The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation. 
		                        		
		                        			Results:
		                        			MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs. 
		                        		
		                        			Conclusions
		                        			In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs. 
		                        		
		                        		
		                        		
		                        	
7. Mechanism of ellagic acid improving cognitive dysfunction in APP/PS double transgenic mice based on PI3K/AKT/GSK-3β signaling pathway
Li-Li ZHONG ; Xin LU ; Ying YU ; Qin-Yan ZHAO ; Jing ZHANG ; Tong-Hui LIU ; Xue-Yan NI ; Li-Li ZHONG ; Yan-Ling CHE ; Dan WU ; Hong LIU
Chinese Pharmacological Bulletin 2024;40(1):90-98
		                        		
		                        			
		                        			 Aim To investigate the effect of ellagic acid (EA) on cognitive function in APP/PS 1 double- transgenic mice, and to explore the regulatory mechanism of ellagic acid on the level of oxidative stress in the hippocampus of double-transgenic mice based on the phosphatidylinositol 3-kinase/protein kinase B/glycogen synthase kinase-3 (PI3K/AKT/GSK-3 β) signaling pathway. Methods Thirty-two SPF-grade 6-month-old APP/PS 1 double transgenic mice were randomly divided into four groups, namely, APP/PS 1 group, APP/PS1 + EA group, APP/PS1 + LY294002 group, APP/PS 1 + EA + LY294002 group, with eight mice in each group, and eight SPF-grade C57BL/6J wild type mice ( Wild type) were selected as the blank control group. The APP/PS 1 + EA group was given 50 mg · kg 
		                        		
		                        		
		                        		
		                        	
		                				8.Systematic characterization and identification of the chemical constituents of the Schisandra chinensis  decoction based on a hybrid scanning technique of UHPLC/IM-QTOF-MS
		                			
		                			Li-li HONG ; Hong-da WANG ; Xiao-yan XU ; Wan-di HU ; Jing-yuan LIU ; Xiao-ying WANG ; Xiu-mei GAO ; Wen-zhi YANG
Acta Pharmaceutica Sinica 2024;59(3):678-692
		                        		
		                        			
		                        			 italic>Schisandra chinensis is a traditional Chinese medicine with the functions of reinforcing deficiency, strengthening, and inducing astringency, appliable to treat the chronic cough and deficiency in breath, palpitation, and insomnia, 
		                        		
		                        	
9.The role of glucose metabolism reprogramming and its targeted therapeutic agents in inflammation-related diseases
Yi WEI ; Xiao-man JIANG ; Shi-lin XIA ; Jing XU ; Ya LI ; Ran DENG ; Yan WANG ; Hong WU
Acta Pharmaceutica Sinica 2024;59(3):511-519
		                        		
		                        			
		                        			 Cells undergo glucose metabolism reprogramming under the influence of the inflammatory microenvironment, changing their primary mode of energy supply from oxidative phosphorylation to aerobic glycolysis. This process is involved in all stages of inflammation-related diseases development. Glucose metabolism reprogramming not only changes the metabolic pattern of individual cells, but also disrupts the metabolic homeostasis of the body microenvironment, which further promotes aerobic glycolysis and provides favourable conditions for the malignant progression of inflammation-related diseases. The metabolic enzymes, transporter proteins, and metabolites of aerobic glycolysis are all key signalling molecules, and drugs can inhibit aerobic glycolysis by targeting these specific key molecules to exert therapeutic effects. This paper reviews the impact of glucose metabolism reprogramming on the development of inflammation-related diseases such as inflammation-related tumours, rheumatoid arthritis and Alzheimer's disease, and the therapeutic effects of drugs targeting glucose metabolism reprogramming on these diseases. 
		                        		
		                        		
		                        		
		                        	
10.Application evaluation of cardiopulmonary exercise test to guide comprehensive pulmonary rehabilitation in patients with pneumoconiosis
Congxia YAN ; Baoping LI ; Fuhai SHEN ; Hong CAO ; Jing LI ; Lirong ZHANG ; Zhiping SUN ; Bowen HOU ; Lini GAO ; Xinyu LI ; Chaoyi MA ; Xiaolu LIU
Journal of Environmental and Occupational Medicine 2024;41(1):47-53
		                        		
		                        			
		                        			Background At present, the practice of pulmonary rehabilitation for pneumoconiosis in China is in a primary stage. The basis for formulating an individualized comprehensive pulmonary rehabilitation plan is still insufficient, which is one of the factors limiting the development of community-level rehabilitation work. Objective To formulate an exercise prescription based on maximum heart rate measured by cardiopulmonary exercise test (CPET), conduct an individualized comprehensive pulmonary rehabilitation program with the exercise prescription for patients with stable pneumoconiosis, and evaluate its role in improving exercise endurance and quality of life, thus provide a basis for the application and promotion of pulmonary rehabilitation. Methods A total of 68 patients were recruited from the Occupational Disease Prevention Hospital of Jinneng Holding Coal Industry Group Co., Ltd. from April to August 2022 , and were divided into an intervention group and a control group by random number table method, with 34 cases in each group. All the pneumoconiosis patients participated in a baseline test. The control group was given routine drug treatment, while the intervention group received multidisciplinary comprehensive pulmonary rehabilitation treatment on the basis of routine drug treatment, including health education, breathing training, exercise training, nutrition guidance, psychological intervention, and sleep management, whose exercise intensity was determined according to the maximum heart rate provided by CPET. The rehabilitation training lasted for 24 weeks. Patients were evaluated at registration and the end of study respectively. CPET was used to measure peak oxygen uptake per kilogram (pVO2/kg), anaerobic threshold (AT), carbon dioxide equivalent of ventilation (EqCO2), maximum metabolic equivalent (METs), and maximum work (Wmax). The modified British Medical Research Council Dyspnea Questionnaire (mMRC), Self-rating Anxiety Scale (SAS), Self-rating Depression Scale (SDS), Pittsburgh Sleep Quality Index (PSQI), Chronic Obstructive Pulmonary Disease Assessment Test (CAT), and Short Form of Health Survey (SF-36) were used to evaluate the potential effect of the comprehensive pulmonary rehabilitation program. Results Among the included 68 patients, 63 patients were having complete data, then 31 cases were assigned in the control group and 32 cases in the interventional group. Before the intervention, there was no significant difference in pVO2/kg, AT, EqCO2, METs, or Wmax between the two groups (P>0.05). At the end of the trail, the indicators like pVO2/kg [(19.81±2.38) mL·(min·kg)−1], AT [(14.48±2.33) mL·(min·kg)−1], METs (5.64±0.69), and Wmax [(85.25±14) W] of patients in the intervention group were all higher than those [(13.90±2.37) mL·(min·kg)−1, (11.70±1.94) mL·(min kg)−1, (3.97±0.70), and (61.77±14.72) W, respectively] in the control group (P<0.001); there was no significant difference in EqCO2 between the two groups (P=0.083). Before the trial, there was no significant difference in mMRC, SAS, SDS, PSQI, or CAT scores between the two groups (P>0.05). At the end of the trail, the mMRC score (1.16±0.57), SAS score (27.93±2.12), SDS score (26.48±1.44), PSQI score (1.08±0.88), and CAT score (4.34±3.28) of patients in the intervention group were lower than those [(2.03±0.83), (35.87±6.91), (34.23±6.65), (5.37±3.03), and (13.87±7.53), respectively] in the control group (P<0.001). The SF-36 scores of bodily pain (94.13±10.72), general health (87.50±5.68), vitality (95.31±5.53), mental health (99.88±0.71), and health changes (74.22±4.42) in the intervention group were higher than those [(71.87±32.72), (65.81±15.55), (74.52±16.45), (86.97±16.56), and (29.84±13.50), respectively] in the control group (P<0.001), and no significant difference was found in social functioning and role emotional scores (P>0.05). Conclusion Comprehensive pulmonary rehabilitation can increase the oxygen intake and exercise endurance of pneumoconiosis patients, ameliorate dyspnea symptoms, elevate psychological state and sleep quality, and improve the quality of life.
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail