1.Dissecting Causal Relationships Between Gut Microbiota, 1400 Blood Metabolites, and Intervertebral Disc Degeneration
Yuxi LIU ; Daxiong FENG ; Hong ZHANG ; Likun WANG
Neurospine 2025;22(1):211-221
Objective:
The precise mechanisms driving intervertebral disc degeneration (IVDD) development remain unclear, but evidence suggests a significant involvement of gut microbiota (GM) and blood metabolites. We aimed to investigate the causal relationships between GM, IVDD, and blood metabolites using Mendelian randomization (MR) analysis.
Methods:
We utilized the summary statistics of GM from the MiBioGen consortium, 1400 blood metabolites from the genome-wide association studies (GWAS) Catalog, and IVDD data from the FinnGen repository, which are sourced from the largest GWAS conducted to date. Employing bidirectional MR analyses, we investigated the causal relationships between GM and IVDD. Additionally, we conducted 2 mediation analyses, 2-step MR and multivariable MR (MVMR), to identify potential mediating metabolites.
Results:
Five bacterial genera were causally associated with IVDD, while IVDD did not show a significant causal effect on GM. In the 2-step MR analysis, Eubacteriumfissicatenagroup, RuminococcaceaeUCG003, Lachnoclostridium, and Marvinbryantia genera, along with metabolites X-24949, Pimeloylcarnitine/3-methyladipoylcarnitine (C7-DC), X-24456, histidine, 2-methylserine, Phosphocholine, and N-delta-acetylornithine, were all significantly associated with IVDD (all p < 0.05). MVMR analysis revealed that the associations between Eubacteriumfissicatenagroup genus and IVDD were mediated by X-24949 (8.1%, p = 0.024); Lachnoclostridium genus and IVDD were mediated by histidine (18.1%, p = 0.013); and RuminococcaceaeUCG003 genus and IVDD were mediated by C7-DC (-7.5%, p = 0.041).
Conclusion
The present MR study offers evidence supporting the causal relationships between several specific GM taxa and IVDD, as well as identifying potential mediating metabolites.
2.Role of prohibitin 2 in mitophagy pathway against atherosclerosis in rats undergoing endurance training
Mingxiao SONG ; Junshunzi CHEN ; Ningwei WANG ; Huan CAI ; Hong FENG
Chinese Journal of Tissue Engineering Research 2025;29(11):2294-2300
BACKGROUND:Exercises can reduce blood lipids and slow down the development of atherosclerosis.Atherosclerosis begins with mitochondrial dysfunction,and prohibitin 2 is involved in mitophagy by endurance training. OBJECTIVE:To explore the role of endurance training in the intervention of prohibitin 2 protein in the mitophagy autophagy pathway in atherosclerosis. METHODS:A total of 40 Wistar rats were randomly divided into control group,exercise group,atherosclerosis group and atherosclerosis combined with exercise group,with 10 rats in each group.A rat model of atherosclerosis was constructed by combining a high-fat diet(9 weeks)with vitamin D injections(weeks 1,3,and 6)in the latter two groups,while the two exercise groups were subjected to progressing intensity endurance training for 9 weeks.After the intervention,lipid and pathological detections were conducted to observe the modeling and interventional effects.Mitochondrial membrane potential and mitophagy proteins were detected by microplate reader and western blot.Immunofluorescence staining was used to observe the co-localization of mitophagy proteins in aortic tissue. RESULTS AND CONCLUSION:Lipid and pathological sections showed that compared with the atherosclerosis group,the serum low-density lipoprotein cholesterol and total cholesterol levels and aortic lipid deposition area were significantly reduced in the atherosclerosis combined with exercise group(P<0.001).The results of mitochondrial membrane potential showed that the significant decrease in mitochondrial membrane potential of the aorta in the atherosclerosis combined with exercise group was reversed(P<0.01).The results of western blot assay showed that compared with the control group,the mitochondrial protein expression of prohibitin 2,LC3Ⅱ/Ⅰ,PINK1 and Parkin was significantly increased(P<0.05),and the protein expression of PARL and PGAM5 decreased(P<0.05).Compared with the atherosclerosis group,the protein expression of PINK1 and Parkin in the mitchondria of rats in the atherosclerosis combined with exercise group was significantly decreased(P<0.05),and the protein expressions of prohibitin 2,LC3Ⅱ/Ⅰ,PARL and PGAM5 were significantly increased(P<0.05).Immunofluorescence results showed that compared with the control group,the co-localization of LC3 and PINK1 with TOMM20 was significantly increased in the atherosclerosis group(P<0.05),while compared with the atherosclerosis group,the co-localization of LC3 and PINK1 with TOMM20 was significantly increased in the atherosclerosis combined with exercise group(P<0.05).Co-localization of LC3 and PARL with prohibitin 2 was significantly increased in the atherosclerosis group compared with the control group(P<0.01),co-localization of LC3 with prohibitin 2 was significantly increased in the atherosclerosis combined with exercise group compared with the atherosclerosis group(P<0.01),and co-localization of PARL protein with prohibitin 2 was significantly decreased in the atherosclerosis combined with exercise group compared with the atherosclerosis group(P<0.01).To conclude,endurance training can induce the expression of prohibitin 2 in the inner mitochondrial membrane and promote the binding of prohibitin 2 to the mitophagy junction protein to complete mitophagy,restore mitochondrial function,and slow down the occurrence of atherosclerosis.
3.Terms Related to The Study of Biomacromolecular Condensates
Ke RUAN ; Xiao-Feng FANG ; Dan LI ; Pi-Long LI ; Yi LIN ; Zheng WANG ; Yun-Yu SHI ; Ming-Jie ZHANG ; Hong ZHANG ; Cong LIU
Progress in Biochemistry and Biophysics 2025;52(4):1027-1035
Biomolecular condensates are formed through phase separation of biomacromolecules such as proteins and RNAs. These condensates exhibit liquid-like properties that can futher transition into more stable material states. They form complex internal structures via multivalent weak interactions, enabling precise spatiotemporal regulations. However, the use of inconsistent and non-standardized terminology has become increasingly problematic, hindering academic exchange and the dissemination of scientific knowledge. Therefore, it is necessary to discuss the terminology related to biomolecular condensates in order to clarify concepts, promote interdisciplinary cooperation, enhance research efficiency, and support the healthy development of this field.
4.Setup Error and Its Influencing Factors in Radiotherapy for Spinal Metastasis
Wenhua QIN ; Xin FENG ; Zengzhou WANG ; Shangnan CHU ; Hong WANG ; Shiyu WU ; Cheng CHEN ; Fukui HUAN ; Bin LIANG ; Tao ZHANG
Cancer Research on Prevention and Treatment 2025;52(5):400-404
Objective To investigate the setup error in patients with spinal bone metastasis who underwent radiotherapy under the guidance of kilovoltage cone-beam CT (KV-CBCT). Methods A total of 118 patients with spinal metastasis who underwent radiotherapy, including 17 cases of cervical spine, 62 cases of thoracic spine, and 39 cases of lumbar spine, were collected. KV-CBCT scans were performed using the linear accelerators from Elekta and Varian’s EDGE system. CBCT images were registered with reference CT images in the bone window mode. A total of 973 data were collected, and 3D linear errors were recorded. Results The patients with spinal bone metastasis were grouped by site, height, weight, and BMI. The P value of the patients grouped only by site was P<0.05, which was statistically significant. Conclusion When grouped by site in the 3D direction, the positioning effect of cervical spine is better than that of thoracic and lumbar spine. The positioning effect of the thoracic spine is better in the head and foot direction but worse in the left and right direction compared with that of the lumbar spine. Instead of extending or narrowing the margin according to the BMI of patients with spinal metastasis, the margin must be changed according to the site of spinal bone metastasis.
5.Dissecting Causal Relationships Between Gut Microbiota, 1400 Blood Metabolites, and Intervertebral Disc Degeneration
Yuxi LIU ; Daxiong FENG ; Hong ZHANG ; Likun WANG
Neurospine 2025;22(1):211-221
Objective:
The precise mechanisms driving intervertebral disc degeneration (IVDD) development remain unclear, but evidence suggests a significant involvement of gut microbiota (GM) and blood metabolites. We aimed to investigate the causal relationships between GM, IVDD, and blood metabolites using Mendelian randomization (MR) analysis.
Methods:
We utilized the summary statistics of GM from the MiBioGen consortium, 1400 blood metabolites from the genome-wide association studies (GWAS) Catalog, and IVDD data from the FinnGen repository, which are sourced from the largest GWAS conducted to date. Employing bidirectional MR analyses, we investigated the causal relationships between GM and IVDD. Additionally, we conducted 2 mediation analyses, 2-step MR and multivariable MR (MVMR), to identify potential mediating metabolites.
Results:
Five bacterial genera were causally associated with IVDD, while IVDD did not show a significant causal effect on GM. In the 2-step MR analysis, Eubacteriumfissicatenagroup, RuminococcaceaeUCG003, Lachnoclostridium, and Marvinbryantia genera, along with metabolites X-24949, Pimeloylcarnitine/3-methyladipoylcarnitine (C7-DC), X-24456, histidine, 2-methylserine, Phosphocholine, and N-delta-acetylornithine, were all significantly associated with IVDD (all p < 0.05). MVMR analysis revealed that the associations between Eubacteriumfissicatenagroup genus and IVDD were mediated by X-24949 (8.1%, p = 0.024); Lachnoclostridium genus and IVDD were mediated by histidine (18.1%, p = 0.013); and RuminococcaceaeUCG003 genus and IVDD were mediated by C7-DC (-7.5%, p = 0.041).
Conclusion
The present MR study offers evidence supporting the causal relationships between several specific GM taxa and IVDD, as well as identifying potential mediating metabolites.
6.Usefulness of intraoperative choledochoscopy in laparoscopic subtotal cholecystectomy for severe cholecystitis
Rui-Hui ZHANG ; Xiang-Nan WANG ; Yue-Feng MA ; Xue-Qian TANG ; Mei-Ju LIN ; Li-Jun SHI ; Jing-Yi LI ; Hong-Wei ZHANG
Annals of Hepato-Biliary-Pancreatic Surgery 2025;29(2):192-198
Laparoscopic subtotal cholecystectomy (LSC) has been a safe and viable alternative to conversion to laparotomy in cases of severe cholecystitis. The objective of this study is to determine the utility of intraoperative choledochoscopy in LSC for the exploration of the gallbladder, cyst duct, and subsequent stone clearance of the cystic duct in cases of severe cholecystitis. A total of 72 patients diagnosed with severe cholecystitis received choledochoscopy-assisted laparoscopic subtotal cholecystectomy (CALSC). A choledochoscopy was performed to explore the gallbladder cavity and/or cystic duct, and to extract stones using a range of techniques. The clinical records, including the operative records and outcomes, were subjected to analysis. No LSC was converted to open surgery, and no bile duct or vascular injuries were sustained. All stones within the cystic duct were removed by a combination of techniques, including high-frequency needle knife electrotomy, basket, and electrohydraulic lithotripsy. A follow-up examination revealed the absence of residual bile duct stones, with the exception of one common bile duct stone, which was extracted via endoscopic retrograde cholangiopancreatography. In certain special cases, CALSC may prove to be an efficacious treatment for the management of severe cholecystitis. This technique allows for optimal comprehension of the situation within the gallbladder cavity and cystic duct, facilitating the removal of stones from the cystic duct and reducing the residue of the non-functional gallbladder remnant.
7.Dissecting Causal Relationships Between Gut Microbiota, 1400 Blood Metabolites, and Intervertebral Disc Degeneration
Yuxi LIU ; Daxiong FENG ; Hong ZHANG ; Likun WANG
Neurospine 2025;22(1):211-221
Objective:
The precise mechanisms driving intervertebral disc degeneration (IVDD) development remain unclear, but evidence suggests a significant involvement of gut microbiota (GM) and blood metabolites. We aimed to investigate the causal relationships between GM, IVDD, and blood metabolites using Mendelian randomization (MR) analysis.
Methods:
We utilized the summary statistics of GM from the MiBioGen consortium, 1400 blood metabolites from the genome-wide association studies (GWAS) Catalog, and IVDD data from the FinnGen repository, which are sourced from the largest GWAS conducted to date. Employing bidirectional MR analyses, we investigated the causal relationships between GM and IVDD. Additionally, we conducted 2 mediation analyses, 2-step MR and multivariable MR (MVMR), to identify potential mediating metabolites.
Results:
Five bacterial genera were causally associated with IVDD, while IVDD did not show a significant causal effect on GM. In the 2-step MR analysis, Eubacteriumfissicatenagroup, RuminococcaceaeUCG003, Lachnoclostridium, and Marvinbryantia genera, along with metabolites X-24949, Pimeloylcarnitine/3-methyladipoylcarnitine (C7-DC), X-24456, histidine, 2-methylserine, Phosphocholine, and N-delta-acetylornithine, were all significantly associated with IVDD (all p < 0.05). MVMR analysis revealed that the associations between Eubacteriumfissicatenagroup genus and IVDD were mediated by X-24949 (8.1%, p = 0.024); Lachnoclostridium genus and IVDD were mediated by histidine (18.1%, p = 0.013); and RuminococcaceaeUCG003 genus and IVDD were mediated by C7-DC (-7.5%, p = 0.041).
Conclusion
The present MR study offers evidence supporting the causal relationships between several specific GM taxa and IVDD, as well as identifying potential mediating metabolites.
8.Usefulness of intraoperative choledochoscopy in laparoscopic subtotal cholecystectomy for severe cholecystitis
Rui-Hui ZHANG ; Xiang-Nan WANG ; Yue-Feng MA ; Xue-Qian TANG ; Mei-Ju LIN ; Li-Jun SHI ; Jing-Yi LI ; Hong-Wei ZHANG
Annals of Hepato-Biliary-Pancreatic Surgery 2025;29(2):192-198
Laparoscopic subtotal cholecystectomy (LSC) has been a safe and viable alternative to conversion to laparotomy in cases of severe cholecystitis. The objective of this study is to determine the utility of intraoperative choledochoscopy in LSC for the exploration of the gallbladder, cyst duct, and subsequent stone clearance of the cystic duct in cases of severe cholecystitis. A total of 72 patients diagnosed with severe cholecystitis received choledochoscopy-assisted laparoscopic subtotal cholecystectomy (CALSC). A choledochoscopy was performed to explore the gallbladder cavity and/or cystic duct, and to extract stones using a range of techniques. The clinical records, including the operative records and outcomes, were subjected to analysis. No LSC was converted to open surgery, and no bile duct or vascular injuries were sustained. All stones within the cystic duct were removed by a combination of techniques, including high-frequency needle knife electrotomy, basket, and electrohydraulic lithotripsy. A follow-up examination revealed the absence of residual bile duct stones, with the exception of one common bile duct stone, which was extracted via endoscopic retrograde cholangiopancreatography. In certain special cases, CALSC may prove to be an efficacious treatment for the management of severe cholecystitis. This technique allows for optimal comprehension of the situation within the gallbladder cavity and cystic duct, facilitating the removal of stones from the cystic duct and reducing the residue of the non-functional gallbladder remnant.
9.Dissecting Causal Relationships Between Gut Microbiota, 1400 Blood Metabolites, and Intervertebral Disc Degeneration
Yuxi LIU ; Daxiong FENG ; Hong ZHANG ; Likun WANG
Neurospine 2025;22(1):211-221
Objective:
The precise mechanisms driving intervertebral disc degeneration (IVDD) development remain unclear, but evidence suggests a significant involvement of gut microbiota (GM) and blood metabolites. We aimed to investigate the causal relationships between GM, IVDD, and blood metabolites using Mendelian randomization (MR) analysis.
Methods:
We utilized the summary statistics of GM from the MiBioGen consortium, 1400 blood metabolites from the genome-wide association studies (GWAS) Catalog, and IVDD data from the FinnGen repository, which are sourced from the largest GWAS conducted to date. Employing bidirectional MR analyses, we investigated the causal relationships between GM and IVDD. Additionally, we conducted 2 mediation analyses, 2-step MR and multivariable MR (MVMR), to identify potential mediating metabolites.
Results:
Five bacterial genera were causally associated with IVDD, while IVDD did not show a significant causal effect on GM. In the 2-step MR analysis, Eubacteriumfissicatenagroup, RuminococcaceaeUCG003, Lachnoclostridium, and Marvinbryantia genera, along with metabolites X-24949, Pimeloylcarnitine/3-methyladipoylcarnitine (C7-DC), X-24456, histidine, 2-methylserine, Phosphocholine, and N-delta-acetylornithine, were all significantly associated with IVDD (all p < 0.05). MVMR analysis revealed that the associations between Eubacteriumfissicatenagroup genus and IVDD were mediated by X-24949 (8.1%, p = 0.024); Lachnoclostridium genus and IVDD were mediated by histidine (18.1%, p = 0.013); and RuminococcaceaeUCG003 genus and IVDD were mediated by C7-DC (-7.5%, p = 0.041).
Conclusion
The present MR study offers evidence supporting the causal relationships between several specific GM taxa and IVDD, as well as identifying potential mediating metabolites.
10.Usefulness of intraoperative choledochoscopy in laparoscopic subtotal cholecystectomy for severe cholecystitis
Rui-Hui ZHANG ; Xiang-Nan WANG ; Yue-Feng MA ; Xue-Qian TANG ; Mei-Ju LIN ; Li-Jun SHI ; Jing-Yi LI ; Hong-Wei ZHANG
Annals of Hepato-Biliary-Pancreatic Surgery 2025;29(2):192-198
Laparoscopic subtotal cholecystectomy (LSC) has been a safe and viable alternative to conversion to laparotomy in cases of severe cholecystitis. The objective of this study is to determine the utility of intraoperative choledochoscopy in LSC for the exploration of the gallbladder, cyst duct, and subsequent stone clearance of the cystic duct in cases of severe cholecystitis. A total of 72 patients diagnosed with severe cholecystitis received choledochoscopy-assisted laparoscopic subtotal cholecystectomy (CALSC). A choledochoscopy was performed to explore the gallbladder cavity and/or cystic duct, and to extract stones using a range of techniques. The clinical records, including the operative records and outcomes, were subjected to analysis. No LSC was converted to open surgery, and no bile duct or vascular injuries were sustained. All stones within the cystic duct were removed by a combination of techniques, including high-frequency needle knife electrotomy, basket, and electrohydraulic lithotripsy. A follow-up examination revealed the absence of residual bile duct stones, with the exception of one common bile duct stone, which was extracted via endoscopic retrograde cholangiopancreatography. In certain special cases, CALSC may prove to be an efficacious treatment for the management of severe cholecystitis. This technique allows for optimal comprehension of the situation within the gallbladder cavity and cystic duct, facilitating the removal of stones from the cystic duct and reducing the residue of the non-functional gallbladder remnant.

Result Analysis
Print
Save
E-mail