1.Simultaneous content determination of seventeen constituents in Yangxue Ruanjian Capsules by UPLC-MS/MS
Yong-Ming LIU ; Shu-Sen LIU ; Yi-Zhe XIONG ; Xiang WANG ; Yu-Yun WU ; Jin LIU ; Ling-Yun PAN ; Guo-Qing DU ; Hong-Sheng ZHAN
Chinese Traditional Patent Medicine 2024;46(2):353-358
AIM To establish a UPLC-MS/MS method for the simultaneous content determination of liquiritin apioside,alibiflorin,swertiamarin,methyl gallate,benzoylpaeoniflorin,sweroside,6′-O-β-D-glucosylgentiopicroside,isoliquiritigenin,loganic acid,liquiritigenin,gallic acid,paeoniflorin,oxypaeoniflorin,gentiopicroside,glycyrrhizic acid,isoliquiritoside and liquiritin in Yangxue Ruanjian Capsules.METHODS The analysis was performed on a 40℃thermostatic Waters BEH C18column(2.1 mm×100 mm,1.7 μm),with the mobile phase comprising of 2 mmol/L ammonium acetate(containing 0.1%formic acid)-acetonitrile flowing at 0.3 mL/min in a gradient elution manner,and electron spray ionization source was adopted in negative ion scanning with multiple reaction monitoring mode.RESULTS Seventeen constituents showed good linear relationships within their own ranges(r>0.999 6),whose average recoveries were 91.33%-104.03%with the RSDs of 1.58%-3.50%.CONCLUSION This rapid,accurate and stable method can be used for the quality control of Yangxue Ruanjian Capsules.
2.The construction and identification of adult-derived placental site trophoblastic tumor organoid
Sai ZHANG ; Jia-Yi ZHOU ; Jing WU ; Huan-Di YU ; Yu-Xiao DING ; Yan DU ; Xin LU ; Hong-Bo ZHAO
Fudan University Journal of Medical Sciences 2024;51(5):800-806
Objective To construct and identify an organoid model of human placental site trophoblastic tumor(PSTT).Methods The tumor cells were obtained by digesting and separating the PSTT tissues and then embedded in Matrigel.The organoids were cultured in the specific organoid medium.The histological morphology of the organoid model was observed by HE staining and the expression levels of the PSTT specific markers[human placental prolactin(HPL),human leukocyte antigen-G(HLA-G)and placental alkaline phosphatase(PLAP)]were detected by immunohistochemistry and immunofluorescence,so as to evaluate the consistency between the organoid model and the PSTT tissue.Meanwhile,the morphology and forming efficiency of the constructed model were observed under a microscope after primary culture,passage generation and cryopreservation to evaluate its potential application as an organoid model in basic and clinical translational research of PSTT.Results The constructed organoid model could proliferate stably,growing from small microspheres into compact solid spheres or spheres with follicle-like structures,and could passage after fully grown in 7-10 days.The cell state remained stable after passage,frozen storage and recovery.HE staining showed that the morphology of the cells in the organoids was similar to that of the primary PSTT tumor cells,and immunofluorescence staining showed that the organoids highly expressed HLA-G and lowly expressed β-HCG,indicating that the constructed organoid model mainly contained intermediate trophoblast.Conclusion The adult-derived PSTT organoid(ADPO)models were successfully established.
3.Factors influencing early collapse progression of the femoral head after allogenic fibula grafting and their predictive value
Yi-Xuan HUANG ; Ming-Bin GUO ; Jian-Bin MAI ; Xin-Wei YUAN ; Hong-Zhong XI ; Wei SONG ; Bin DU ; Xin LIU
Medical Journal of Chinese People's Liberation Army 2024;49(11):1272-1280
Objective To explore the influential factors and predictive value of early femoral head collapse progression following allogeneic fibula grafting(AFG)surgery.Methods Clinical and radiological data of 68 patients(75 hips)with osteonecrosis of the femoral head(ONFH)who underwent AFG between January 2008 and December 2022 at the Orthopedics and Traumatology Department,Affiliated Hospital of Nanjing University of Chinese Medicine were retrospectively analyzed.Seventy-five hips were divided into stable(n=40)and progressive(n=35)groups based on the presence or absence of postoperative collapse progression.Age,gender,etiology,location of the lesion,Association Research Circulation Osseous(ARCO)stage,Japanese Committee of Osteonecrosis Investigation(JIC)classification,China-Japan Friendship Hospital(CJFH)classification,and Hounsfield units(HU)value of anterolateral sclerosis rim(ⅠSHU)were collected.Univariate and multivariate logistic regression analyses were used to identify the factors influencing early collapse progression after AFG.Receiver operating characteristic(ROC)curve was used to analyze the predictive value of the identified factors influencing postoperative early collapse progression.Results Of the 75 hips,35(46.7%)had postoperative collapse progression.Univariate logistic regression analysis showed that age,ARCO stage,JIC classification,and ⅠSHU were in fluencing factors for early femoral head collapse progression after AFG(P<0.05).Multivariate logistic regression analysis showed that ARCO stage ⅢA and JIC classification C2 were independent risk factors for early femoral head collapse progression after AFG,while ⅠSHU was identified as an independent protective factor(P<0.05).The ROC curve analysis showed that the sensitivities of ARCO stage,JIC classification,ⅠSHU,and the combined predictive model were 0.850,0.725,0.800,and 0.775,the specificities were 0.486,0.657,0.743,and 0.914,and the area under the ROC curve(AUC)were 0.668,0.725,0.811,and 0.896,respectively.Conclusions ⅠSHU is associated with early collapse progression after AFG in patients with ONFH.ARCO stage ⅢA,JIC classification C2,and ⅠSHU are independent factors influencing postoperative early collapse progression and have a certain predictive value.
4.Synthesis and Characterization of Carbon Dots and Its Applications in Latent Fingerprint Development
Wen-Zhuo FAN ; Zhuo-Hong YU ; Meng WANG ; Jie LI ; Yi-Ze DU ; Ming LI ; Chuan-Jun YUAN
Chinese Journal of Analytical Chemistry 2024;52(4):492-503
Fluorescent carbon dots(CDs)were synthesized via a solvothermal method with citric acid and urea as raw materials,and ethylene glycol as reaction solvent.The micromorphology,crystal structure,elemental composition,surface functional group,and optical property of as-synthesized CDs were characterized.The excitation-dependent fluorescence property of CDs was investigated,and the effects of synthesis conditions including reaction temperature,reaction time and raw materials on excitation and emission wavelengths of the CDs were also discussed.Then,a series of CDs-based fluorescent composites were prepared by combining CDs with starch,nano-silica,montmorillonite,kaoline,kieselguhr and magnesium oxide,respectively.Finally,the CDs-starch composites were used for latent fingerprint development on smooth substrates,and the qualitative as well as quantitative evaluation of the contrast,sensitivity and selectivity in fingerprint development were also made.Enhanced development of latent fingerprints was thus achieved by the aid of the excitation-dependent fluorescence property of CDs-starch composite combined with the optical filtering technique,which could decrease the background noise interference to a great extent.Experimental results showed that,the contrast between fingerprint(developing signal)and substrate(background noise)was obvious,exhibiting a strong contrast;the minutiae of papillary ridges were clear,indicating a high sensitivity;the adsorption between CDs-starch composites and fingerprint residues was specific,showing a good selectivity.
5.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
6.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
7.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
8.Changing distribution and resistance profiles of Klebsiella strains in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Chuyue ZHUO ; Yingyi GUO ; Chao ZHUO ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):418-426
Objective To understand the changing distribution and antimicrobial resistance profiles of Klebsiella strains in 52 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Methods Antimicrobial susceptibility testing was carried out according to the unified CHINET protocol.The susceptibility results were interpreted according to the breakpoints in the Clinical & Laboratory Standards Institute(CLSI)M100 document.Results A total of 241,549 nonduplicate Klebsiella strains were isolated from 2015 to 2021,including Klebsiella pneumoniae(88.0%),Klebsiella aerogenes(5.8%),Klebsiella oxytoca(5.7%),and other Klebsiella species(0.6%).Klebsiella strains were mainly isolated from respiratory tract(48.49±5.32)%.Internal medicine(22.79±3.28)%,surgery(17.98±3.10)%,and ICU(14.03±1.39)%were the top 3 departments where Klebsiella strains were most frequently isolated.K.pneumoniae isolates showed higher resistance rate to most antimicrobial agents compared to other Klebsiella species.Klebsiella isolates maintained low resistance rates to tigecycline and polymyxin B.ESBLs-producing K.pneumoniae and K.oxytoca strains showed higher resistance rates to all the antimicrobial agents tested compared to the corresponding ESBLs-nonproducing strains.The K.pneumoniae and carbapenem-resistant K.pneumoniae(CRKP)strains isolated from ICU patients demonstrated higher resistance rates to majority of the antimicrobial agents tested than the strains isolated from non-ICU patients.The CRKP strains isolated from adult patients had higher resistance rates to most of the antimicrobial agents tested than the corresponding CRKP strains isolated from paediatric patients.Conclusions The prevalence of carbapenem-resistant strains in Klebsiella isolates increased greatly from 2015 to 2021.However,the Klebsiella isolates remained highly susceptible to tigecycline and polymyxin B.Antimicrobial resistance surveillance should still be strengthened for Klebsiella strains.
9.Changing resistance profiles of Staphylococcus isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yuling XIAO ; Mei KANG ; Yi XIE ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(5):570-580
Objective To investigate the changing distribution and antibiotic resistance profiles of clinical isolates of Staphylococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Staphylococcus according to the unified protocol of CHINET(China Antimicrobial Surveillance Network)using disk diffusion method and commercial automated systems.The CHINET antimicrobial resistance surveillance data from 2015 to 2021 were interpreted according to the 2021 CLSI breakpoints and analyzed using WHONET 5.6.Results During the period from 2015 to 2021,a total of 204,771 nonduplicate strains of Staphylococcus were isolated,including 136,731(66.8%)strains of Staphylococcus aureus and 68,040(33.2%)strains of coagulase-negative Staphylococcus(CNS).The proportions of S.aureus isolates and CNS isolates did not show significant change.S.aureus strains were mainly isolated from respiratory specimens(38.9±5.1)%,wound,pus and secretions(33.6±4.2)%,and blood(11.9±1.5)%.The CNS strains were predominantly isolated from blood(73.6±4.2)%,cerebrospinal fluid(12.1±2.5)%,and pleural effusion and ascites(8.4±2.1)%.S.aureus strains were mainly isolated from the patients in ICU(17.0±7.3)%,outpatient and emergency(11.6±1.7)%,and department of surgery(11.2±0.9)%,whereas CNS strains were primarily isolated from the patients in ICU(32.2±9.7)%,outpatient and emergency(12.8±4.7)%,and department of internal medicine(11.2±1.9)%.The prevalence of methicillin-resistant strains was 32.9%in S.aureus(MRSA)and 74.1%in CNS(MRCNS).Over the 7-year period,the prevalence of MRSA decreased from 42.1%to 29.2%,and the prevalence of MRCNS decreased from 82.1%to 68.2%.MRSA showed higher resistance rates to all the antimicrobial agents tested except trimethoprim-sulfamethoxazole than methicillin-susceptible S.aureus(MSSA).Over the 7-year period,MRSA strains showed decreasing resistance rates to gentamicin,rifampicin,and levofloxacin,MRCNS showed decreasing resistance rates to gentamicin,erythromycin,rifampicin,and trimethoprim-sulfamethoxazole,but increasing resistance rate to levofloxacin.No vancomycin-resistant strains were detected.The prevalence of linezolid-resistant MRCNS increased from 0.2%to 2.3%over the 7-year period.Conclusions Staphylococcus remains the major pathogen among gram-positive bacteria.MRSA and MRCNS were still the principal antibiotic-resistant gram-positive bacteria.No S.aureus isolates were found resistant to vancomycin or linezolid,but linezolid-resistant strains have been detected in MRCNS isolates,which is an issue of concern.
10.Molecular epidemiological characteristics of carbapenem-resistant Raoultella ornithinolytica
Xiaofang XIE ; Feinan QIAN ; Zhichen ZHU ; Yi ZHENG ; Hong DU
Chinese Journal of Laboratory Medicine 2024;47(11):1306-1313
Objective:To understand the clinical prevalence and drug resistance of Raoultella ornithinolytica, and to analyze the drug-resistant characteristics of carbapenem-resistant strains. Methods:A total of 83 clinical isolates of R.ornithinolytica, identified using matrix-assisted laser desorption ionization time-of-flight mass spectrometry between May 2015 and December 2020, were collected. Clinical information, drug-resistant phenotype, and carbapenemase gene of the carbapenem resistant strains were analyzed. Homology of the resistant strains was examined by pulse-field gel electrophoresis (PFGE). The molecular characteristics of plasmids, drug resistance genes and virulence genes were determined by whole genome sequencing (WGS), and a phylogenetic tree was constructed based on core single-nucleotide polymorphisms(core-SNPs) for evolutionary analysis of the carbapenem-resistant strains. Results:All 83 clinical isolates were confirmed as R.ornithinolytica, of which 11 strains were resistant to carbapenem antibiotics. The resistant strains were mainly sourced from the drainage fluid and wound secretions of patients in surgery, intensive care unit and oncology department. In addition to carbapenems resistances, the 11 strains were also resistant to cephalosporins, cephamycins, and aztreonam, while maintaining good in vitro activity to levofloxacin, tigecycline and colistin. Carbapenemase gene detection showed that 8 strains carried the bla IMP-4, 3 carried bla KPC-2, of which 1 strain carried both bla IMP-4 and bla KPC-2, and 2 strains carried both bla IMP-4 and bla NDM-1. PFGE results showed 7 banding types and 4 epidemic strains. WGS identified plasmid replicon types carried by the 11 strains of R. ornithinolyticus including IncFIA, IncFIB, IncHI1B, IncU, repB and Col, along with 10 additional types of drug resistance genes. Iron carrier related virulence genes entB, fyu, ybt and irp were detected in all carbapenem-resistant strains. Phylogenetic analysis showed that Ro6348 and Ro6050, Ro7401 and Ro7242, Ro8647 and Ro5832, and Ro9907 and Ro8856 were grouped together, while Ro8454, Ro7349 and Ro7326 were located on different branches. Conclusions:The overall drug resistance of R. ornithinolytica closely resembles Klebsiella pneumoniae and carries a variety of drug-resistant genes, but differs from domestic K.pneumoniae in that its carbapenemase is mainly IMP-4. PFGE and phylogenetic analysis results suggest that the strain has a tendency of mutual transmission in hospital, which deserves more attention.

Result Analysis
Print
Save
E-mail