1.Erratum to: Corrigendum: 2023 Korean Society of Menopause -Osteoporosis Guidelines Part I
Dong Ock LEE ; Yeon Hee HONG ; Moon Kyoung CHO ; Young Sik CHOI ; Sungwook CHUN ; Youn-Jee CHUNG ; Seung Hwa HONG ; Kyu Ri HWANG ; Jinju KIM ; Hoon KIM ; Dong-Yun LEE ; Sa Ra LEE ; Hyun-Tae PARK ; Seok Kyo SEO ; Jung-Ho SHIN ; Jae Yen SONG ; Kyong Wook YI ; Haerin PAIK ; Ji Young LEE
Journal of Menopausal Medicine 2024;30(3):179-179
2.Erratum to: Corrigendum: 2023 Korean Society of Menopause -Osteoporosis Guidelines Part I
Dong Ock LEE ; Yeon Hee HONG ; Moon Kyoung CHO ; Young Sik CHOI ; Sungwook CHUN ; Youn-Jee CHUNG ; Seung Hwa HONG ; Kyu Ri HWANG ; Jinju KIM ; Hoon KIM ; Dong-Yun LEE ; Sa Ra LEE ; Hyun-Tae PARK ; Seok Kyo SEO ; Jung-Ho SHIN ; Jae Yen SONG ; Kyong Wook YI ; Haerin PAIK ; Ji Young LEE
Journal of Menopausal Medicine 2024;30(3):179-179
3.Erratum to: Corrigendum: 2023 Korean Society of Menopause -Osteoporosis Guidelines Part I
Dong Ock LEE ; Yeon Hee HONG ; Moon Kyoung CHO ; Young Sik CHOI ; Sungwook CHUN ; Youn-Jee CHUNG ; Seung Hwa HONG ; Kyu Ri HWANG ; Jinju KIM ; Hoon KIM ; Dong-Yun LEE ; Sa Ra LEE ; Hyun-Tae PARK ; Seok Kyo SEO ; Jung-Ho SHIN ; Jae Yen SONG ; Kyong Wook YI ; Haerin PAIK ; Ji Young LEE
Journal of Menopausal Medicine 2024;30(3):179-179
4.The 2024 Guidelines for Osteoporosis - Korean Society of Menopause
Dong Ock LEE ; Yeon Hee HONG ; Moon Kyoung CHO ; Young Sik CHOI ; Sungwook CHUN ; Youn-Jee CHUNG ; Seung Hwa HONG ; Kyu Ri HWANG ; Jinju KIM ; Hoon KIM ; Dong- Yun LEE ; Sa Ra LEE ; Hyun-Tae PARK ; Seok Kyo SEO ; Jung-Ho SHIN ; Jae Yen SONG ; Kyong Wook YI ; Haerin PAIK ; Ji Young LEE
Journal of Menopausal Medicine 2024;30(1):1-23
5.The 2024 Guidelines for Osteoporosis - Korean Society of Menopause: Part II
Dong Ock LEE ; Yeon Hee HONG ; Moon Kyoung CHO ; Young Sik CHOI ; Sungwook CHUN ; Youn-Jee CHUNG ; Seung Hwa HONG ; Kyu Ri HWANG ; Jinju KIM ; Hoon KIM ; Dong-Yun LEE ; Sa Ra LEE ; Hyun-Tae PARK ; Seok Kyo SEO ; Jung-Ho SHIN ; Jae Yen SONG ; Kyong Wook YI ; Haerin PAIK ; Ji Young LEE
Journal of Menopausal Medicine 2024;30(2):55-77
6.Corrigendum: 2023 Korean Society of Menopause - Osteoporosis Guidelines Part I
Dong Ock LEE ; Yeon Hee HONG ; Moon Kyoung CHO ; Young Sik CHOI ; Sungwook CHUN ; Youn-Jee CHUNG ; Seung Hwa HONG ; Kyu Ri HWANG ; Jinju KIM ; Hoon KIM ; Dong-Yun LEE ; Sa Ra LEE ; Hyun-Tae PARK ; Seok Kyo SEO ; Jung-Ho SHIN ; Jae Yen SONG ; Kyong Wook YI ; Haerin PAIK ; Ji Young LEE
Journal of Menopausal Medicine 2024;30(2):126-126
7.Prediction of Early Recanalization after Intravenous Thrombolysis in Patients with Large-Vessel Occlusion
Young Dae KIM ; Hyo Suk NAM ; Joonsang YOO ; Hyungjong PARK ; Sung-Il SOHN ; Jeong-Ho HONG ; Byung Moon KIM ; Dong Joon KIM ; Oh Young BANG ; Woo-Keun SEO ; Jong-Won CHUNG ; Kyung-Yul LEE ; Yo Han JUNG ; Hye Sun LEE ; Seong Hwan AHN ; Dong Hoon SHIN ; Hye-Yeon CHOI ; Han-Jin CHO ; Jang-Hyun BAEK ; Gyu Sik KIM ; Kwon-Duk SEO ; Seo Hyun KIM ; Tae-Jin SONG ; Jinkwon KIM ; Sang Won HAN ; Joong Hyun PARK ; Sung Ik LEE ; JoonNyung HEO ; Jin Kyo CHOI ; Ji Hoe HEO ;
Journal of Stroke 2021;23(2):244-252
Background:
and Purpose We aimed to develop a model predicting early recanalization after intravenous tissue plasminogen activator (t-PA) treatment in large-vessel occlusion.
Methods:
Using data from two different multicenter prospective cohorts, we determined the factors associated with early recanalization immediately after t-PA in stroke patients with large-vessel occlusion, and developed and validated a prediction model for early recanalization. Clot volume was semiautomatically measured on thin-section computed tomography using software, and the degree of collaterals was determined using the Tan score. Follow-up angiographic studies were performed immediately after t-PA treatment to assess early recanalization.
Results:
Early recanalization, assessed 61.0±44.7 minutes after t-PA bolus, was achieved in 15.5% (15/97) in the derivation cohort and in 10.5% (8/76) in the validation cohort. Clot volume (odds ratio [OR], 0.979; 95% confidence interval [CI], 0.961 to 0.997; P=0.020) and good collaterals (OR, 6.129; 95% CI, 1.592 to 23.594; P=0.008) were significant factors associated with early recanalization. The area under the curve (AUC) of the model including clot volume was 0.819 (95% CI, 0.720 to 0.917) and 0.842 (95% CI, 0.746 to 0.938) in the derivation and validation cohorts, respectively. The AUC improved when good collaterals were added (derivation cohort: AUC, 0.876; 95% CI, 0.802 to 0.950; P=0.164; validation cohort: AUC, 0.949; 95% CI, 0.886 to 1.000; P=0.036). The integrated discrimination improvement also showed significantly improved prediction (0.097; 95% CI, 0.009 to 0.185; P=0.032).
Conclusions
The model using clot volume and collaterals predicted early recanalization after intravenous t-PA and had a high performance. This model may aid in determining the recanalization treatment strategy in stroke patients with large-vessel occlusion.
8.Prediction of Early Recanalization after Intravenous Thrombolysis in Patients with Large-Vessel Occlusion
Young Dae KIM ; Hyo Suk NAM ; Joonsang YOO ; Hyungjong PARK ; Sung-Il SOHN ; Jeong-Ho HONG ; Byung Moon KIM ; Dong Joon KIM ; Oh Young BANG ; Woo-Keun SEO ; Jong-Won CHUNG ; Kyung-Yul LEE ; Yo Han JUNG ; Hye Sun LEE ; Seong Hwan AHN ; Dong Hoon SHIN ; Hye-Yeon CHOI ; Han-Jin CHO ; Jang-Hyun BAEK ; Gyu Sik KIM ; Kwon-Duk SEO ; Seo Hyun KIM ; Tae-Jin SONG ; Jinkwon KIM ; Sang Won HAN ; Joong Hyun PARK ; Sung Ik LEE ; JoonNyung HEO ; Jin Kyo CHOI ; Ji Hoe HEO ;
Journal of Stroke 2021;23(2):244-252
Background:
and Purpose We aimed to develop a model predicting early recanalization after intravenous tissue plasminogen activator (t-PA) treatment in large-vessel occlusion.
Methods:
Using data from two different multicenter prospective cohorts, we determined the factors associated with early recanalization immediately after t-PA in stroke patients with large-vessel occlusion, and developed and validated a prediction model for early recanalization. Clot volume was semiautomatically measured on thin-section computed tomography using software, and the degree of collaterals was determined using the Tan score. Follow-up angiographic studies were performed immediately after t-PA treatment to assess early recanalization.
Results:
Early recanalization, assessed 61.0±44.7 minutes after t-PA bolus, was achieved in 15.5% (15/97) in the derivation cohort and in 10.5% (8/76) in the validation cohort. Clot volume (odds ratio [OR], 0.979; 95% confidence interval [CI], 0.961 to 0.997; P=0.020) and good collaterals (OR, 6.129; 95% CI, 1.592 to 23.594; P=0.008) were significant factors associated with early recanalization. The area under the curve (AUC) of the model including clot volume was 0.819 (95% CI, 0.720 to 0.917) and 0.842 (95% CI, 0.746 to 0.938) in the derivation and validation cohorts, respectively. The AUC improved when good collaterals were added (derivation cohort: AUC, 0.876; 95% CI, 0.802 to 0.950; P=0.164; validation cohort: AUC, 0.949; 95% CI, 0.886 to 1.000; P=0.036). The integrated discrimination improvement also showed significantly improved prediction (0.097; 95% CI, 0.009 to 0.185; P=0.032).
Conclusions
The model using clot volume and collaterals predicted early recanalization after intravenous t-PA and had a high performance. This model may aid in determining the recanalization treatment strategy in stroke patients with large-vessel occlusion.
9.Predictors of Malignancy in “Pure” Branch-Duct Intraductal Papillary Mucinous Neoplasm of the Pancreas without Enhancing Mural Nodules on CT Imaging: A Nationwide Multicenter Study.
Tae Hyeon KIM ; Young Sik WOO ; Hyung Ku CHON ; Jin Hyeok HWANG ; Kyo Sang YOO ; Woo Jin LEE ; Kwang Hyuck LEE ; Jong Kyun LEE ; Seok Ho DONG ; Chang Hwan PARK ; Eun Taek PARK ; Jong Ho MOON ; Ho Gak KIM ; Kwang Bum CHO ; Hong Ja KIM ; Seung Ok LEE ; Young Koog CHEON ; Jeong Mi LEE ; Jin Woo PARK ; Myung Hwan KIM
Gut and Liver 2018;12(5):583-590
BACKGROUND/AIMS: Presence of enhanced mural nodules, which can be visualized using computed tomography (CT), is one of high-risk stigmata in branch-duct intraductal papillary mucinous neoplasms (BD-IPMNs). Conversely, the absence of enhanced mural nodules on preoperative imaging does not exclude malignant risk. The present study aimed to investigate other morphological features as predictors of malignancy in “pure” BD-IPMNs without enhanced mural nodules on CT. METHODS: This retrospective study included 180 patients with surgically confirmed “pure” BD-IPMNs of the pancreas and no enhanced mural nodules on preoperative CT. The study was conducted at 15 tertiary referral centers throughout South Korea. Univariate and multivariate analyses were used to identify significant predictors of malignancy. RESULTS: BD-IPMNs with low-grade (n=84) or moderate-grade (n=76) dysplasia were classified as benign; those with high-grade dysplasia (n=8) or invasive carcinoma (n=12) were classified as malignant. The multivariate analysis revealed that cyst size ≥30 mm (odds ratio, 8.6; p=0.001) and main pancreatic duct diameter ≥5 mm (odds ratio, 4.1; p=0.01) were independent risk factors for malignancy in “pure” BD-IPMNs without enhanced mural nodules on CT. Endoscopic ultrasound detected enhanced mural nodules (6/82) that had been missed on CT, and two IPMNs with enhanced mural nodules were malignant. CONCLUSIONS: In patients with “pure” BD-IPMNs who have no enhanced mural nodules on CT, cyst size ≥30 mm and main pancreatic duct diameter ≥5 mm may be associated with malignancy.
Christianity
;
Humans
;
Korea
;
Mucins*
;
Multivariate Analysis
;
Pancreas*
;
Pancreatic Ducts
;
Retrospective Studies
;
Risk Factors
;
Tertiary Care Centers
;
Ultrasonography
10.Low-Tube-Voltage CT Urography Using Low-Concentration-Iodine Contrast Media and Iterative Reconstruction: A Multi-Institutional Randomized Controlled Trial for Comparison with Conventional CT Urography.
Sang Youn KIM ; Jeong Yeon CHO ; Joongyub LEE ; Sung Il HWANG ; Min Hoan MOON ; Eun Ju LEE ; Seong Sook HONG ; Chan Kyo KIM ; Kyeong Ah KIM ; Sung Bin PARK ; Deuk Jae SUNG ; Yongsoo KIM ; You Me KIM ; Sung Il JUNG ; Sung Eun RHA ; Dong Won KIM ; Hyun LEE ; Youngsup SHIM ; Inpyeong HWANG ; Sungmin WOO ; Hyuck Jae CHOI
Korean Journal of Radiology 2018;19(6):1119-1129
OBJECTIVE: To compare the image quality of low-tube-voltage and low-iodine-concentration-contrast-medium (LVLC) computed tomography urography (CTU) with iterative reconstruction (IR) with that of conventional CTU. MATERIALS AND METHODS: This prospective, multi-institutional, randomized controlled trial was performed at 16 hospitals using CT scanners from various vendors. Patients were randomly assigned to the following groups: 1) the LVLC-CTU (80 kVp and 240 mgI/mL) with IR group and 2) the conventional CTU (120 kVp and 350 mgI/mL) with filtered-back projection group. The overall diagnostic acceptability, sharpness, and noise were assessed. Additionally, the mean attenuation, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and figure of merit (FOM) in the urinary tract were evaluated. RESULTS: The study included 299 patients (LVLC-CTU group: 150 patients; conventional CTU group: 149 patients). The LVLC-CTU group had a significantly lower effective radiation dose (5.73 ± 4.04 vs. 8.43 ± 4.38 mSv) compared to the conventional CTU group. LVLC-CTU showed at least standard diagnostic acceptability (score ≥ 3), but it was non-inferior when compared to conventional CTU. The mean attenuation value, mean SNR, CNR, and FOM in all pre-defined segments of the urinary tract were significantly higher in the LVLC-CTU group than in the conventional CTU group. CONCLUSION: The diagnostic acceptability and quantitative image quality of LVLC-CTU with IR are not inferior to those of conventional CTU. Additionally, LVLC-CTU with IR is beneficial because both radiation exposure and total iodine load are reduced.
Commerce
;
Contrast Media*
;
Humans
;
Iodine
;
Noise
;
Prospective Studies
;
Radiation Exposure
;
Signal-To-Noise Ratio
;
Urinary Tract
;
Urography*

Result Analysis
Print
Save
E-mail