1.Discussion on Mechanisms of "State-Target Differentiation and Treatment" for Diabetic Foot Ulcers from the Perspective of Epithelial-Mesenchymal Transition
Hong CHEN ; Weijing FAN ; Renyan HUANG ; Guobin LIU
Journal of Traditional Chinese Medicine 2025;66(1):23-29
Building on the theory of "state-target differentiation and treatment" proposed by Academician TONG Xiaolin, diabetic foot ulcers (DFUs) are considered to belong to the "collateral injury" stage, characterized by the interplay of five states,i.e. dampness, heat, stasis, deficiency, and impairment. The dynamic biological process of epithelial-mesenchymal transition (EMT) is closely associated with the healing process of DFUs. The treatment of DFUs through staged differentiation under the "state-target differentiation and treatment" theory not only provides a basis for precise clinical treatment, but also offers insights into the regulatory roles of EMT in different states and potential intervention targets. The dampness state typically exits during the inflammatory phase, local inflammation and fluid metabolism disorders inducing EMT. Treatment focuses on draining dampness and alleviating edema, promoting local microcirculation, and improving tissue hypoxia. The heat state often reflects acute local inflammatory responses. Treatment emphasizes clearing heat and resolving toxins, regulating the EMT process to reduce inflammation, control infection, and alleviate redness, swollen, heat, and pain in the affected area. The stasis state mainly occurs during the proliferation phase. Treatment centers on invigorating blood and dissolving stasis, and unblocking the channels and quickening the collaterals. EMT plays a role in remodeling the extracellular matrix, promoting tissue repair and angiogenesis. The deficiency state is common in chronic phase, where treatment prioritizes tonifying qi and nourishing blood while reinforcing healthy qi and dispelling pathogens. EMT regulation focuses on restoring local tissue metabolism and improving the micro-environment to enhance tissue repair capacity. The impairment state represents the progression of disease deterioration. Treatment should focus on supplementing qi, blood, yin, and yang, and also promoting muscle growth and strengthening bones, supplementing by resolving toxins and stasis. EMT plays a role by regulating the activity of extracellular matrix-degrading enzymes to prevent excessive tissue repair and scarring, thereby facilitating the reconstruction of normal tissue structures.
2.Hypoglycemic Effect and Mechanism of ICK Pattern Peptides
Lin-Fang CHEN ; Jia-Fan ZHANG ; Ye-Ning GUO ; Hui-Zhong HUANG ; Kang-Hong HU ; Chen-Guang YAO
Progress in Biochemistry and Biophysics 2025;52(1):50-60
Diabetes is a very complex endocrine disease whose common feature is the increase in blood glucose concentration. Persistent hyperglycemia can lead to blindness, kidney and heart disease, neurodegeneration, and many other serious complications that have a significant impact on human health and quality of life. The number of people with diabetes is increasing yearly. The global diabetes prevalence in 20-79 year olds in 2021 was estimated to be 10.5% (536.6 million), and it will rise to 12.2% (783.2 million) in 2045. The main modes of intervention for diabetes include medication, dietary management, and exercise conditioning. Medication is the mainstay of treatment. Marketed diabetes drugs such as metformin and insulin, as well as GLP-1 receptor agonists, are effective in controlling blood sugar levels to some extent, but the preventive and therapeutic effects are still unsatisfactory. Peptide drugs have many advantages such as low toxicity, high target specificity, and good biocompatibility, which opens up new avenues for the treatment of diabetes and other diseases. Currently, insulin and its analogs are by far the main life-saving drugs in clinical diabetes treatment, enabling effective control of blood glucose levels, but the risk of hypoglycemia is relatively high and treatment is limited by the route of delivery. New and oral anti-diabetic drugs have always been a market demand and research hotspot. Inhibitor cystine knot (ICK) peptides are a class of multifunctional cyclic peptides. In structure, they contain three conserved disulfide bonds (C3-C20, C7-C22, and C15-C32) form a compact “knot” structure, which can resist degradation of digestive protease. Recent studies have shown that ICK peptides derived from legume, such as PA1b, Aglycin, Vglycin, Iglycin, Dglycin, and aM1, exhibit excellent regulatory activities on glucose and lipid metabolism at the cellular and animal levels. Mechanistically, ICK peptides promote glucose utilization by muscle and liver through activation of IR/AKT signaling pathway, which also improves insulin resistance. They can repair the damaged pancrease through activation of PI3K/AKT/Erk signaling pathway, thus lowering blood glucose. The biostability and hypoglycemic efficacy of the ICK peptides meet the requirements for commercialization of oral drugs, and in theory, they can be developed into natural oral anti-diabetes peptide drugs. In this review, the structural properties, activity and mechanism of ICK pattern peptides in regulating glucose and lipid metabolism were summaried, which provided a reference for the development of new oral peptides for diabetes.
3.Investigation and influencing factors of enteral nutrition support in elderly patients with ischemic stroke
Hong RAN ; Yan REN ; Xiaolu HUANG ; Xiaodan HAO
Journal of Public Health and Preventive Medicine 2025;36(1):123-126
Objective To explore enteral nutrition support and analyze its influencing factors in elderly patients with ischemic stroke. Methods A total of 328 patients with ischemic stroke in General Hospital of Western Theater Command were enrolled for nutritional screening between July 2020 and February 2024. Corresponding nutritional support plans were selected to investigate the compliance of patients with enteral nutrition support. Patients were divided into a standard group (n=140) and a non-standard group (n=97) based on whether their calorie intake met the standard. The effects of different clinical characteristics on enteral nutrition support were explored, and logistic analysis was used to analyze the influencing factors of non-standard enteral nutrition support. Results In the 328 patients with ischemic stroke, proportions of total parenteral nutrition support, total enteral nutrition support, and parenteral/enteral nutrition support were 25.30%, 27.74% and 46.95%, respectively. The proportions of vomiting or regurgitation, gastric residual volume >100 mL, mechanical ventilation and use of antibiotics >2 in the non-standard group were higher than those in the standard group (P<0.05). Logistic analysis showed that the above clinical characteristics were risk factors influencing patients with enteral nutrition support and parenteral/enteral nutrition support. Conclusion Vomiting or regurgitation , gastric residual volume, mechanical ventilation, and amount of antibiotics used are important influencing factors of enteral nutrition support in patients. Clinicians should pay attention to the above clinical characteristics.
4.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
5.Effect and mechanism of Erastin on ferroptosis of acute myeloid leukemia cells
Xiandong Jiang ; Yingying Huang ; Xiaoying Hong ; Xindi Lin ; Donghong Lin ; Liping Lin
Acta Universitatis Medicinalis Anhui 2025;60(1):15-21
Objective :
To explore the role of lysophosphatidylcholine acyltransferase 3(LPCAT3) in Erastin-induced ferroptosis of acute myeloid leukemia(AML) cells and its related molecular regulatory mechanisms.
Methods :
Tetrazolium salt(MTS) method was used to detect the sensitivity of different AML cells to the classic ferroptosis inducer Erastin, real time quantitative polymerase chain reaction(qPCR) was used to detect the basal expression level ofLPCAT3mRNA, and the correlation between them was analyzed. Lentivirus-mediatedLPCAT3overexpression AML cell lines(OE group) and negative control lines(NC group) were constructed. After Erastin intervention, MTS, flow cytometry, and micromethods were used to detect cell viability, lipid reactive oxygen species(ROS), and Malondialdehyde(MDA), respectively. qPCR and Western blot were used to detect unfolded protein response(UPR) classic pathway signaling molecules(PERK, ATF4, GRP78, etc.) expression levels. The above ferroptosis-related indicators were detected after combined intervention with the UPR inhibitor 4-phenylbutyric acid(4-PBA), and the regulatory relationship was analyzed.
Results :
Four different types of AML cells had different sensitivities to ferroptosis, among which K562 cells were relatively insensitive. The IC50of the four types of AML cells to Erastin was negatively correlated with the expression level ofLPCAT3(r=-0.919,P<0.001). After Erastin intervention, the cell viability of K562 cells in the OE group was significantly inhibited by Erastin compared with the NC group(P<0.001), and the levels of lipid ROS and MDA increased(P<0.001). The results of qPCR and Western blot showed that, compared with the NC group, the mRNA and protein expression of UPR classic pathway moleculesPERK,ATF4, andGRP78mRNA and protein increased in the OE group(P<0.01). After inhibiting the UPR pathway by 4-PBA, the viability of K562 cells decreased(P<0.01), and lipid ROS and MDA levels increased(P<0.01) compared with the uninhibited state.
Conclusion
Overexpression ofLPCAT3can promote ferroptosis in K562 cells, and this process is negatively regulated by the classical UPR pathway PERK/ATF.
6.Pharmacological effects of Yindan Pinggan capsules in treating intrahepatic cholestasis
Shu-xin CAO ; Feng HUANG ; Fang WU ; Rong-rong HE
Acta Pharmaceutica Sinica 2025;60(2):417-426
This study aimed to investigate the therapeutic effect of Yindan Pinggan capsules (YDPG) on intrahepatic cholestasis (IHC) through animal experiments, while utilizing network pharmacology and molecular docking techniques to explore its potential mechanisms. Initially, the therapeutic effect of YDPG on an
7.Acute fascioliasis hepatica: a case report
Pingbang WANG ; Zhuying HUANG ; Hong WANG ; Nianmeng LIU ; Keli ZHANG ; Huaizhong XIAO
Chinese Journal of Schistosomiasis Control 2025;37(1):104-106
Fascioliasis hepatica, caused by Fasciola hepatica, is a serious zoonotic parasitic disease, and F. hepatica mainly infects ruminants and occasionally humans. This article presents the diagnosis and treatment of an acute fascioliasis hepatica case with complaints of “abdominal distension and yellowing of skin and sclera for one day”, so as to provide insights into clinical diagnosis and treatment of fascioliasis hepatica and avoid misdiagnosis and mistreatment.
8.Trend analysis of birth defects in Fengxian District, Shanghai, 2018‒2022
Huihui MA ; Hong CHEN ; Hong JIANG ; Guangsheng LIANG ; Qin HUANG ; Meng QIN
Shanghai Journal of Preventive Medicine 2025;37(2):174-178
ObjectiveTo retrospectively analyze the epidemiological trends of birth defects in perinatal infants in Fengxian District, Shanghai from 2018 to 2022, so as to provide a scientific evidence for the formulation of related prevention and control strategies. MethodsBased on the data from the National Birth Defects Surveillance System, statistical analysis was conducted on the perinatal birth defects from monitored hospitals within the region from 2018 to 2022. ResultsFrom 2018 to 2022, a total of 20 870 perinatal infants delivered in the monitored hospitals in Fengxian District, with 472 cases with birth defects, showing a significant increase in the prevalence of birth defects (PRR=1.49, 95%CI: 1.39‒1.59). The risk of birth defects increased with maternal age, especially for advanced maternal age (PRR=1.58, 95%CI: 1.12‒2.25). Infants born to mothers with gestational diabetes had a higher prevalence of birth defects compared to those without gestational diabetes (PRR=1.99, 95%CI: 1.46‒2.70). Infants with birth defects were more likely to be born prematurely (PRR=2.07, 95%CI:1.56‒2.76). The top three types of birth defects were congenital heart disease (CHD), other anomalies of the external ear, and polydactyly. ConclusionThe prevalence of birth defects in Fengxian District monitored hospitals showed an upward trend from 2018 to 2022. Advanced maternal age and gestational diabetes were identified as risk factors for birth defects. CHD is the leading type of birth defect in Fengxian District over the five-year period. To reduce the prevalence of birth defects, it is crucial to implement comprehensive prevention and treatment measures for CHD.
9.Role and mechanism of platelet-derived growth factor BB in repair of growth plate injury
Hongcheng PENG ; Guoxuan PENG ; Anyi LEI ; Yuan LIN ; Hong SUN ; Xu NING ; Xianwen SHANG ; Jin DENG ; Mingzhi HUANG
Chinese Journal of Tissue Engineering Research 2025;29(7):1497-1503
BACKGROUND:In the initial stage of growth plate injury inflammation,platelet-derived growth factor BB promotes the repair of growth plate injury by promoting mesenchymal progenitor cell infiltration,chondrogenesis,osteogenic response,and regulating bone remodeling. OBJECTIVE:To elucidate the action mechanism of platelet-derived growth factor BB after growth plate injury. METHODS:PubMed,VIP,WanFang,and CNKI databases were used as the literature sources.The search terms were"growth plate injury,bone bridge,platelet-derived growth factor BB,repair"in English and Chinese.Finally,66 articles were screened for this review. RESULTS AND CONCLUSION:Growth plate injury experienced early inflammation,vascular reconstruction,fibroossification,structural remodeling and other pathological processes,accompanied by the crosstalk of chondrocytes,vascular endothelial cells,stem cells,osteoblasts,osteoclasts and other cells.Platelet-derived growth factor BB,as an important factor in the early inflammatory response of injury,regulates the injury repair process by mediating a variety of cellular inflammatory responses.Targeting the inflammatory stimulation mediated by platelet-derived growth factor BB may delay the bone bridge formation process by improving the functional activities of osteoclasts,osteoblasts,and chondrocytes,so as to achieve the injury repair of growth plate.Platelet-derived growth factor BB plays an important role in angiogenesis and bone repair tissue formation at the injured site of growth plate and intrachondral bone lengthening function of uninjured growth plate.Inhibition of the coupling effect between angiogenesis initiated by platelet-derived growth factor BB and intrachondral bone formation may achieve the repair of growth plate injury.
10.Analysis of the clinical application of emotion management technique in building a doctor-patient destiny community
Tiantian LI ; Lanyan LI ; Lining HUANG ; Chunyong WANG
Chinese Medical Ethics 2025;38(5):553-558
The doctor-patient relationship is a set of social relationships based on shared interests, mutual trust, and emotional bonds, to relieve illnesses and promote health. However, the doctor-patient relationship often falls into tensions and conflicts. How to build a trusting and harmonious doctor-patient destiny community has become one of the most important issues of concern to the whole society. Based on the biopsychosocial concept of disease, the emotion management technique (EMT) emphasizes that doctors take the patient’s emotion as a clue in clinical diagnosis and treatment, regard emotions as one of the important indicators for disease diagnosis, understand the emotional events behind the disease, and provide patients with appropriate empathy and emotional management, so as to provide clinical methods for managing diseases and building a trusting and harmonious doctor-patient relationship.


Result Analysis
Print
Save
E-mail