1.Genetic research progress in branchio-oto syndrome/ branchio-oto-renal syndrome.
Anhai CHEN ; Jie LING ; Yong FENG
Journal of Central South University(Medical Sciences) 2022;47(1):129-138
Branchio-oto syndrome (BOS)/branchio-oto-renal syndrome (BORS) is a kind of autosomal dominant heterogeneous disorder. These diseases are mainly characterized by hearing impairment and abnormal phenotype of ears, accompanied by renal malformation and branchial cleft anomalies including cyst or fistula, with an incidence of 1/40 000 in human population. Otic anormalies are one of the most obvious clinical manifestations of BOS/BORS, including deformities of external, middle, inner ears and hearing loss with conductive, sensorineural or mix, ranging from mild to profound loss. Temporal bone imaging could assist in the diagnosis of middle ear and inner ear malformations for clinicians. Multiple methods including direct sequencing combined with next generation sequencing (NGS), multiplex ligation-dependent probe amplification (MLPA), or array-based comparative genomic hybridization (aCGH) can effectively screen and identify pathogenic genes and/or variation types of BOS/BORS. About 40% of patients with BOS/BORS carry aberrations of EYA1 gene which is the most important cause of BOS/BORS. A total of 240 kinds of pathogenic variations of EYA1 have been reported in different populations so far, including frameshift, nonsense, missense, aberrant splicing, deletion and complex rearrangements. Human Endogenous Retroviral sequences (HERVs) may play an important role in mediating EYA1 chromosomal fragment deletion mutations caused by non-allelic homologous recombination. EYA1 encodes a phosphatase-transactivator cooperated with transcription factors of SIX1, participates in cranial sensory neurogenesis and development of branchial arch-derived organs, then regulates the morphological and functional differentiation of the outer ear, middle ear and inner ear toward normal tissues. In addition, pathogenic mutations of SIX1 and SIX5 genes can also cause BOS/BORS. Variations of these genes mentioned above may cause disease by destroying the bindings between SIX1-EYA1, SIX5-EYA1 or SIX1-DNA. However, the role of SIX5 gene in the pathogenesis of BORS needs further verification.
Branchio-Oto-Renal Syndrome/pathology*
;
Chromosome Deletion
;
Comparative Genomic Hybridization
;
Genetic Research
;
Homeodomain Proteins/genetics*
;
Humans
;
Intracellular Signaling Peptides and Proteins
;
Nuclear Proteins/metabolism*
;
Pedigree
;
Protein Tyrosine Phosphatases/metabolism*
2.The effect of HOXC10 gene on biological behaviors of glioma cells and mechanism in tumor microenvironment.
Wen Yi JIANG ; Qing Yang LEI ; Sha Sha LIU ; Li YANG ; Bo YANG ; Yi ZHANG
Chinese Journal of Oncology 2022;44(3):228-237
Objective: To study the effects of Homeobox C10 (HOXC10) on biological characteristics such as migration, invasion and proliferation of glioma cancer cells and to explore the role of HOXC10 gene in glioma microenvironment. Methods: The expression level of HOXC10 in high grade glioma (glioblastoma) and low grade glioma and its effect on patient survival were analyzed by using The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) database. Hoxc10-siRNA-1, HOXC10-siRNA-2 and siRNA negative control (NC) were transfected into U251 cells according to the operation instructions of HOXC10-siRNA transfection. 100 ng/ mL recombinant protein chemokine ligand 2 (reCCL2) was added into the transfection group, and was labeled as HOXC10-siRNA-1+ reCCL2 and HOXC10-siRNA-2+ reCCL2 groups. The expressions of HOXC10 mRNA and target protein in each group was detected by real-time fluorescence quantitative polymerase chain reaction (qRT-PCR) and western blot. The proliferation ability of cells in each group was detected by cell counting kit 8 (CCK8) method. The migration ability of cells was detected by Transwell assay and Nick assay, and cell apoptosis was detected by flow cytometry. The expression of chemokines in each group was detected by multiple factors. Co-incubation assays were performed to determine the role of HOXC10 and chemokine ligand 2 (CCL2) in recruiting and polarizing tumor-associated macrophages (M2-type macrophages). Results: The median expression level of HOXC10 in high grade gliomas was 8.51, higher than 1.00 in low grade gliomas (P<0.001) in TCGA database. The median expression level of HOXC10 in high grade gliomas was 0.83, higher than 0.00 in low grade gliomas (P=0.002) in CGGA database. The 5-year survival rate of patients with high HOXC10 expression in TCGA database was 28.2%, lower than 78.7% of those with low HOXC10 expression (P<0.001), and the 5-year survival rate of patients with high HOXC10 expression in CGGA database was 20.3%, lower than 58.0% of those with low HOXC10 expression (P<0.001). The numbers of cell migration in HOXC10-siRNA-1 group and HOXC10-siRNA-2 group were (45±3) and (69±4) respectively, lower than (159±3) in NC group (P<0.05). The cell mobility of HOXC10-siRNA-1 group and HOXC10-siRNA-2 group at 48 hours were (15±2)% and (28±4)% respectively, lower than (80±5)% of NC group (P<0.05). The expressions of vimentin in HOXC10-siRNA-1 group and HOXC10-siRNA-2 group were (141 740.00±34 024.56) and (94 655.00±5 687.97), N-cadherin were (76 810.00±14.14) and (94 254.00±701.45), β-catenin were (75 786.50±789.84) and (107 296.50±9 614.53), lower than (233 768.50±34 114.37), (237 154.50±24 715.50) and (192 449.50±24 178.10) of NC group (P<0.05). The A value of HOXC10-siRNA-1 group and HOXC10-siRNA-2 group were (0.44±0.05) and (0.32±0.02) at 96 hours, lower than 0.92±0.12 of NC group (P<0.05). The apoptosis rates of HOXC10-siRNA-1 group and HOXC10 siRNA-2 group were (10.23±1.24)% and (13.81±2.16)%, higher than (4.60±0.07)% of NC group (P<0.05). The expression levels of CCL2 in U251 cells in HOXC10-siRNA-1 and HOXC10-siRNA-2 groups were (271.63±44.27) and (371.66±50.21), lower than (933.93±29.84) in NC group (P<0.05). The expression levels of CCL5 (234.81±5.95 and 232.62±5.72), CXCL10 (544.13±48.14 and 500.87±15.65) and CXCL11 (215.75±15.30 and 176.18±16.49) in HOXC10-siRNA-1 and HOXC10-siRNA-2 groups were higher than those in NC group (9.98±0.71, 470.54±18.84 and 13.55±0.73, respectively, P<0.05). The recruited numbers of CD14(+) THP1 in HOXC10-siRNA-1 and HOXC10-siRNA-2 groups were (159.33±1.15) and (170.67±1.15), respectively, lower than (360.00±7.81) in NC group (P<0.05), while addition of reCCL2 promoted the recruitment of CD14(+) THP1 cells (287.00±3.61 and 280.67±2.31 in HOXC10-siRNA-1+ reCCL2 group and HOXC10-siRNA-2+ reCCL2 group, respectively, P<0.05). The expressions level of M2-type macrophage-related gene TGF-β in HOXC10-siRNA-1 group and HOXC10-siRNA-2 group were (0.30±0.02) and (0.28±0.02), respectively, lower than (1.06±0.10) in NC group (P<0.05). The expressions level of M1-related gene NOS2 in HOXC10-siRNA-1 and HOXC10-siRNA-2 were (11 413.95±1 911.85) and (5 894.00±945.21), respectively, higher than (13.39±4.32) in NC group (P<0.05). Conclusions: The expression of HOXC10 in glioma is high and positively correlated with the poor prognosis of glioma patients. Knockdown of HOXC10 can inhibit the proliferation, migration and metastasis of human glioma U251 cells. HOXC10 may play an immunosuppressive role in glioma microenvironment by promoting the expression of CCL2 and recruiting and polarizing tumor-associated macrophages (M2 macrophages).
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Gene Expression Regulation, Neoplastic
;
Genes, Homeobox
;
Glioma/pathology*
;
Homeodomain Proteins/metabolism*
;
Humans
;
Neoplasm Invasiveness/genetics*
;
Tumor Microenvironment
3.miRNA-181a-5p inhibits proliferation and migration of osteosarcoma cell line HOS by targeting HOXB4.
Jia-Xi LI ; Xi-Jing HE ; Fei LI ; Yu-Tian LEI ; Yu-Bing YANG ; Jing LI ; Gao-Yang ZONG ; Min-Chao ZHAO ; Su-E CHANG
China Journal of Orthopaedics and Traumatology 2022;35(11):1097-1103
OBJECTIVE:
To study the effects and mechanisms of miR-181a-5p on the proliferation, cycle and migration of HOS osteosarcoma cells.
METHODS:
Real-time quantitative PCR was used to detect the expression of miR-181a-5p and HOXB4 in osteoblast hFOB1.19 cell line and osteosarcoma cell lines (HOS, U2OS, MG63). miR-181a-5p mimics and miR-181a-5p inhibitors were respectively transfected into HOS cells by Lipofectamine 2000, and miR NC group was set as control group. CCK-8 method was used to detect the change in cell proliferation. Flow cytometry was used to detect the changes in cell cycles. Wound healing experiments and Transwell migration experiments were used to detect the changes in cell migration ability. The target gene of miR-181a-5p was predicted by Targetscan website and validated by Dual-luciferase reporter gene system and Western blot.
RESULTS:
Compared with osteoblast hFOB1.19, miR-181a-5p was low expressed in osteosarcoma cells HOS, U2OS, and MG63(P<0.05), while HOXB4 was high expressed in osteosarcoma cells HOS, U2OS, and MG63(P<0.05). Compared with the miR NC group, over expression of miR-181a-5p inhibited the proliferation and migration of osteosarcoma HOS cells, and the number of cells in S phase decreased(P<0.05). However, knockdown miR-181a-5p promoted the proliferation and migration of osteosarcoma HOS cells, the cells in S phase increased(P<0.05). Bioinformatics prediction and Dual-luciferase reporter gene system validate HOXB4 as a downstream target gene of miR-181a-5p(P<0.05). Western blot showed that miR-181a-5p over expression or knockdown significantly down-regulated or up-regulated HOXB4 expressions in the HOS cells respectively(P<0.05).
CONCLUSION
miR-181a-5p is down expressed in osteosarcoma cells, and over-expression miR-181a-5p inhibits the proliferation, cell cycle and migration ability of osteosarcoma cells by targeting HOXB4.
Humans
;
Apoptosis
;
Bone Neoplasms/genetics*
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Homeodomain Proteins/genetics*
;
MicroRNAs/metabolism*
;
Osteosarcoma/genetics*
;
Transcription Factors/genetics*
4.Two naturally derived small molecules disrupt the sineoculis homeobox homolog 1-eyes absent homolog 1 (SIX1-EYA1) interaction to inhibit colorectal cancer cell growth.
Jing WU ; Bin HUANG ; Hong-Bo HE ; Wen-Zhu LU ; Wei-Guo WANG ; Hong LIU
Chinese Medical Journal 2021;134(19):2340-2352
BACKGROUND:
Emerging evidence indicates that the sineoculis homeobox homolog 1-eyes absent homolog 1 (SIX1-EYA1) transcriptional complex significantly contributes to the pathogenesis of multiple cancers by mediating the expression of genes involved in different biological processes, such as cell-cycle progression and metastasis. However, the roles of the SIX1-EYA1 transcriptional complex and its targets in colorectal cancer (CRC) are still being investigated. This study aimed to investigate the roles of SIX1-EYA1 in the pathogenesis of CRC, to screen inhibitors disrupting the SIX1-EYA1 interaction and to evaluate the efficiency of small molecules in the inhibition of CRC cell growth.
METHODS:
Real-time quantitative polymerase chain reaction and western blotting were performed to examine gene and protein levels in CRC cells and clinical tissues (collected from CRC patients who underwent surgery in the Department of Integrated Traditional and Western Medicine, West China Hospital of Sichuan University, between 2016 and 2018, n = 24). In vivo immunoprecipitation and in vitro pulldown assays were carried out to determine SIX1-EYA1 interaction. Cell proliferation, cell survival, and cell invasion were determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, clonogenic assay, and Boyden chamber assay, respectively. The Amplified Luminescent Proximity Homogeneous Assay Screen (AlphaScreen) method was used to obtain small molecules that specifically disrupted SIX1-EYA1 interaction. CRC cells harboring different levels of SIX1/EYA1 were injected into nude mice to establish tumor xenografts, and small molecules were also injected into mice to evaluate their efficiency to inhibit tumor growth.
RESULTS:
Both SIX1 and EYA1 were overexpressed in CRC cancerous tissues (for SIX1, 7.47 ± 3.54 vs.1.88 ± 0.35, t = 4.92, P = 0.008; for EYA1, 7.61 ± 2.03 vs. 2.22 ± 0.45, t = 6.73, P = 0.005). The SIX1/EYA1 complex could mediate the expression of two important genes including cyclin A1 (CCNA1) and transforming growth factor beta 1 (TGFB1) by binding to the myocyte enhancer factor 3 consensus. Knockdown of both SIX1 and EYA1 could decrease cell proliferation, cell invasion, tumor growth, and in vivo tumor growth (all P < 0.01). Two small molecules, NSC0191 and NSC0933, were obtained using AlphaScreen and they could significantly inhibit the SIX1-EYA1 interaction with a half-maximal inhibitory concentration (IC50) of 12.60 ± 1.15 μmol/L and 83.43 ± 7.24 μmol/L, respectively. Administration of these two compounds could significantly repress the expression of CCNA1 and TGFB1 and inhibit the growth of CRC cells in vitro and in vivo.
CONCLUSIONS
Overexpression of the SIX1/EYA1 complex transactivated the expression of CCNA1 and TGFB1, causing the pathogenesis of CRC. Pharmacological inhibition of the SIX1-EYA1 interaction with NSC0191 and NSC0933 significantly inhibited CRC cell growth by affecting cell-cycle progression and metastasis.
Animals
;
Cell Line, Tumor
;
Cell Proliferation
;
Colorectal Neoplasms/genetics*
;
Gene Expression Regulation, Neoplastic
;
Genes, Homeobox
;
Homeodomain Proteins/metabolism*
;
Humans
;
Intracellular Signaling Peptides and Proteins
;
Mice
;
Mice, Nude
;
Nuclear Proteins/genetics*
;
Protein Tyrosine Phosphatases/genetics*
5.Apical ectodermal ridge regulates three principal axes of the developing limb.
Journal of Zhejiang University. Science. B 2020;21(10):757-766
Understanding limb development not only gives insights into the outgrowth and differentiation of the limb, but also has clinical relevance. Limb development begins with two paired limb buds (forelimb and hindlimb buds), which are initially undifferentiated mesenchymal cells tipped with a thickening of the ectoderm, termed the apical ectodermal ridge (AER). As a transitional embryonic structure, the AER undergoes four stages and contributes to multiple axes of limb development through the coordination of signalling centres, feedback loops, and other cell activities by secretory signalling and the activation of gene expression. Within the scope of proximodistal patterning, it is understood that while fibroblast growth factors (FGFs) function sequentially over time as primary components of the AER signalling process, there is still no consensus on models that would explain proximodistal patterning itself. In anteroposterior patterning, the AER has a dual-direction regulation by which it promotes the sonic hedgehog (Shh) gene expression in the zone of polarizing activity (ZPA) for proliferation, and inhibits Shh expression in the anterior mesenchyme. In dorsoventral patterning, the AER activates Engrailed-1 (En1) expression, and thus represses Wnt family member 7a (Wnt7a) expression in the ventral ectoderm by the expression of Fgfs, Sp6/8, and bone morphogenetic protein (Bmp) genes. The AER also plays a vital role in shaping the individual digits, since levels of Fgf4/8 and Bmps expressed in the AER affect digit patterning by controlling apoptosis. In summary, the knowledge of crosstalk within AER among the three main axes is essential to understand limb growth and pattern formation, as the development of its areas proceeds simultaneously.
Animals
;
Apoptosis
;
Body Patterning
;
Bone Morphogenetic Proteins/biosynthesis*
;
Developmental Biology
;
Ectoderm/metabolism*
;
Extremities/embryology*
;
Fibroblast Growth Factor 10/metabolism*
;
Fibroblast Growth Factors/biosynthesis*
;
Gene Expression Regulation
;
Hedgehog Proteins/biosynthesis*
;
Homeodomain Proteins/biosynthesis*
;
Mesoderm/metabolism*
;
Mice
;
Signal Transduction
;
Wnt Proteins/biosynthesis*
6.Overexpression of Dlx2 enhances osteogenic differentiation of BMSCs and MC3T3-E1 cells via direct upregulation of Osteocalcin and Alp.
Jianfei ZHANG ; Wenbin ZHANG ; Jiewen DAI ; Xudong WANG ; Steve Guofang SHEN
International Journal of Oral Science 2019;11(2):12-12
Genetic studies have revealed a critical role of Distal-homeobox (Dlx) genes in bone formation, and our previous study showed that Dlx2 overexpressing in neural crest cells leads to profound abnormalities of the craniofacial tissues. The aim of this study was to investigate the role and the underlying molecular mechanisms of Dlx2 in osteogenic differentiation of mouse bone marrow stromal cells (BMSCs) and pre-osteoblast MC3T3-E1 cells. Initially, we observed upregulation of Dlx2 during the early osteogenesis in BMSCs and MC3T3-E1 cells. Moreover, Dlx2 overexpression enhanced alkaline phosphatase (ALP) activity and extracellular matrix mineralization in BMSCs and MC3T3-E1 cell line. In addition, micro-CT of implanted tissues in nude mice confirmed that Dlx2 overexpression in BMSCs promoted bone formation in vivo. Unexpectedly, Dlx2 overexpression had little impact on the expression level of the pivotal osteogenic transcription factors Runx2, Dlx5, Msx2, and Osterix, but led to upregulation of Alp and Osteocalcin (OCN), both of which play critical roles in promoting osteoblast maturation. Importantly, luciferase analysis showed that Dlx2 overexpression stimulated both OCN and Alp promoter activity. Through chromatin-immunoprecipitation assay and site-directed mutagenesis analysis, we provide molecular evidence that Dlx2 transactivates OCN and Alp expression by directly binding to the Dlx2-response cis-acting elements in the promoter of the two genes. Based on these findings, we demonstrate that Dlx2 overexpression enhances osteogenic differentiation in vitro and accelerates bone formation in vivo via direct upregulation of the OCN and Alp gene, suggesting that Dlx2 plays a crucial role in osteogenic differentiation and bone formation.
Animals
;
Cell Differentiation
;
physiology
;
Core Binding Factor Alpha 1 Subunit
;
Homeodomain Proteins
;
metabolism
;
Mesenchymal Stem Cells
;
metabolism
;
Mice
;
Mice, Nude
;
Osteoblasts
;
metabolism
;
Osteocalcin
;
drug effects
;
Osteogenesis
;
physiology
;
Transcription Factors
;
metabolism
;
Up-Regulation
7.Mechanism of effective components of Mori Folium in alleviating insulin resistance based on JNK signaling pathway.
Ying-Hui LIU ; Xin MOU ; Di-Yi ZHOU ; Cheng-Min SHOU
China Journal of Chinese Materia Medica 2019;44(5):1019-1025
A stable hepatoma cell line(Hep G2 cell) insulin resistance model was established and used to analyze the effect of effective components of Mori Folium in alleviating insulin resistance,and preliminary explore the mechanism for alleviating insulin resistance. The Hep G2 insulin action concentration and the duration of action were investigated using the glucose oxidase method(GOD-POD method) to establish a stable Hep G2 insulin resistance model. Normal control group,model group,Mori Folium polysaccharide group,Mori Folium flavonoid group and rosiglitazone group were divided to determine the glucose consumption. The effect of Mori Folium effective components on Hep G2 insulin resistance was analyzed. The mRNA expressions of JNK,IRS-1 and PDX-1 in each group were detected by Real-time quantitative PCR(qRT-PCR). The protein expressions of p-JNK,IRS-1 and PDX-1 were detected by Western blot. And the mechanism of effective components of Mori Folium in alleviating insulin resistance was investigated. The results showed that the glucose consumption was significantly decreased in the insulin resistance cells after incubation with 25. 0 mg·L-1 insulin for 36 h(P<0. 01),and the model was relatively stable within 36 h. Mori Folium polysaccharides and flavonoids all alleviated insulin resistance,among which Mori Folium flavonoids had better effect in alleviating Hep G2 insulin resistance(P<0. 05). The qRT-PCR analysis showed that Mori Folium polysaccharides and flavonoids could inhibit JNK and IRS-1 mRNA expressions,while enhancing PDX-1 mRNA expression. Western blot analysis displayed that Mori Folium polysaccharides and flavonoids could inhibit p-JNK and IRS-1 protein expressions,while enhancing PDX-1 protein expression. Mori Folium polysaccharides and flavonoids can alleviate insulin resistance in Hep G2 cells,and its mechanism may be the alleviation of insulin resistance by inhibiting JNK signaling pathway.
Drugs, Chinese Herbal
;
pharmacology
;
Glucose
;
Hep G2 Cells
;
Homeodomain Proteins
;
metabolism
;
Humans
;
Insulin
;
Insulin Receptor Substrate Proteins
;
metabolism
;
Insulin Resistance
;
MAP Kinase Kinase 4
;
metabolism
;
MAP Kinase Signaling System
;
Morus
;
chemistry
;
Plant Leaves
;
chemistry
;
Trans-Activators
;
metabolism
8.Regulation of flowering time via miR172-mediated APETALA2-like expression in ornamental gloxinia (Sinningia speciosa).
Xiao-Yan LI ; Fu GUO ; Sheng-Yun MA ; Mu-Yuan ZHU ; Wei-Huai PAN ; Hong-Wu BIAN
Journal of Zhejiang University. Science. B 2019;20(4):322-331
We investigated the microRNA172 (miR172)-mediated regulatory network for the perception of changes in external and endogenous signals to identify a universally applicable floral regulation system in ornamental plants, manipulation of which could be economically beneficial. Transgenic gloxinia plants, in which miR172 was either overexpressed or suppressed, were generated using Agrobacterium-mediated transformation. They were used to study the effect of altering the expression of this miRNA on time of flowering and to identify its mRNA target. Early or late flowering was observed in transgenic plants in which miR172 was overexpressed or suppressed, respectively. A full-length complementary DNA (cDNA) of gloxinia (Sinningia speciosa) APETALA2-like (SsAP2-like) was identified as a target of miR172. The altered expression levels of miR172 caused up- or down-regulation of SsAP2-like during flower development, which affected the time of flowering. Quantitative real-time reverse transcription PCR analysis of different gloxinia tissues revealed that the accumulation of SsAP2-like was negatively correlated with the expression of miR172a, whereas the expression pattern of miR172a was negatively correlated with that of miR156a. Our results suggest that transgenic manipulation of miR172 could be used as a universal strategy for regulating time of flowering in ornamental plants.
Arabidopsis/genetics*
;
Arabidopsis Proteins/metabolism*
;
Cloning, Molecular
;
DNA, Complementary/metabolism*
;
Flowers/physiology*
;
Gene Expression Profiling
;
Gene Expression Regulation, Plant
;
Homeodomain Proteins/metabolism*
;
Lamiales/physiology*
;
MicroRNAs/metabolism*
;
Nuclear Proteins/metabolism*
;
Plants, Genetically Modified/physiology*
;
Plasmids/metabolism*
;
Polymerase Chain Reaction
;
Transgenes
9.Influence of Fat Mass- and Obesity-Associated Genotype, Body Mass Index, and Dietary Intake on Effects of Iroquois-related Homeobox 3 Gene on Body Weight.
Maryam GHOLAMALIZADEH ; Saeid DOAEI ; Mohammad Esmail AKBARI ; Shahla REZAEI ; Alireza Mosavi JARRAHI
Chinese Medical Journal 2018;131(17):2112-2113
10.Expression of HOXB4, PRDM16 and HOXA9 in Patients with Acute Myeloid Leukemia and Its Clinical Significance.
Lin LI ; Chun-Ting ZHAO ; Bo-Li CUI ; Shao-Ling WU ; Xiao-Dan LIU ; Zhan SU ; Jie YANG ; Wei WANG ; Zhong-Guang CUI ; Hong-Guo ZHAO
Journal of Experimental Hematology 2016;24(2):326-331
OBJECTIVETo investigate HOXB4, PRDM16 and HOXA9 gene expression in patients with acute myeloid leukemia (AML) and its clinical significance.
METHODSReal-time quantitative PCR (RT-qPCR) with SYBR Green assay was used to detect the expression of HOXB4, PRDM16 and HOXA9 gene in AML patients (40 cases), the patients with complete remission (9 cases) and patients with non-malignant hematologic diseases as control (10 cases). The relationship between the expression levels of gene HOXB4, PRDM16, HOXA9 and clinical features was investigated by statistical analysis.
RESULTSThe gene expression levels of HOXB4, PRDM16, HOXA9 in newly diagnosed or relapsed AML patients were significantly higher than those in patients with non-malignant hematologic disease (P < 0.05). It was observed that the expression of HOXB4 gene in newly diagnosed or relapsed patients positively correlates with leukemic blasts in bone marrow (r = 0.39). The expression levels of HOXB4, PRDM16 and HOXA9 positively correlate with each other. There was statistical significance among gene expressions in different phases (newly diagnosed, relapse, remission). No correlation was observed between expression levels of HOXB4, PRDM16, HOXA9 and chromosome risk status. It was noticed that expression levels of HOXB4, PRDM16, HOXA9 genes were lower in the patients achieved remission after two courses of chemotherapy than those in the other. And high expression group of each gene had a lower remission rate than that in the low expression group.
CONCLUSIONThe expression level of HOXB4, PRDM16, HOXA9 genes and leukemic blasts somewhat correlate with curative effect and prognosis. The expression of HOXB4, PRDM16, HOXA9 genes is higher in newly diagnosed and relapsed leukemia patients, and lower in the patients acquired CR/PR. High expression of HOXB4, PRDM16, HOXA9 genes predicts an adverse prognosis.
Bone Marrow ; Case-Control Studies ; DNA-Binding Proteins ; genetics ; metabolism ; Gene Expression ; Homeodomain Proteins ; genetics ; metabolism ; Humans ; Leukemia, Myeloid, Acute ; genetics ; metabolism ; Prognosis ; RNA, Messenger ; metabolism ; Real-Time Polymerase Chain Reaction ; Recurrence ; Remission Induction ; Transcription Factors ; genetics ; metabolism

Result Analysis
Print
Save
E-mail