1.Subperiosteal ganglion of the distal radius: a case report
Young Ho ROH ; Ho Hyup KIM ; Kyung Ryeol LEE ; Chang Lim HYUN ; Kyu Bum SEO
Archives of hand and microsurgery 2025;30(2):114-120
Subperiosteal ganglion is a rare lesion with an unclear pathogenesis that develops from the periosteum with cortical erosion. It most commonly occurs in the tibia and occurs less frequently in the upper extremities. We report a case of subperiosteal ganglion at the ulnar side of the metaphysis of the distal radius in a 27-year-old woman, and we describe the diagnosis and treatment.
2.Subperiosteal ganglion of the distal radius: a case report
Young Ho ROH ; Ho Hyup KIM ; Kyung Ryeol LEE ; Chang Lim HYUN ; Kyu Bum SEO
Archives of hand and microsurgery 2025;30(2):114-120
Subperiosteal ganglion is a rare lesion with an unclear pathogenesis that develops from the periosteum with cortical erosion. It most commonly occurs in the tibia and occurs less frequently in the upper extremities. We report a case of subperiosteal ganglion at the ulnar side of the metaphysis of the distal radius in a 27-year-old woman, and we describe the diagnosis and treatment.
3.Subperiosteal ganglion of the distal radius: a case report
Young Ho ROH ; Ho Hyup KIM ; Kyung Ryeol LEE ; Chang Lim HYUN ; Kyu Bum SEO
Archives of hand and microsurgery 2025;30(2):114-120
Subperiosteal ganglion is a rare lesion with an unclear pathogenesis that develops from the periosteum with cortical erosion. It most commonly occurs in the tibia and occurs less frequently in the upper extremities. We report a case of subperiosteal ganglion at the ulnar side of the metaphysis of the distal radius in a 27-year-old woman, and we describe the diagnosis and treatment.
4.Human-Robot Interaction and Social Robot: The Emerging Field of Healthcare Robotics and Current and Future Perspectives for Spinal Care
In Ho HAN ; Dong Hwan KIM ; Kyoung Hyup NAM ; Jae Il LEE ; Kye-Hyung KIM ; Jong-Hwan PARK ; Ho Seok AHN
Neurospine 2024;21(3):868-877
Recent advances in robotics technology and artificial intelligence (AI) have sparked increased interest in humanoid robots that resemble humans and social robots capable of interacting socially. Alongside this trend, a new field of robot research called human-robot interaction (HRI) is gaining prominence. The aim of this review paper is to introduce the fundamental concepts of HRI and social robots, examine their current applications in the medical field, and discuss the current and future prospects of HRI and social robots in spinal care. HRI is an interdisciplinary field where robotics, AI, social sciences, design, and various disciplines collaborate organically to develop robots that successfully interact with humans as the ultimate goal. While social robots are not yet widely deployed in clinical environments, ongoing HRI research encompasses various areas such as nursing and caregiving support, social and emotional assistance, rehabilitation and cognitive enhancement for the elderly, medical information provision and education, as well as patient monitoring and data collection. Although still in its early stages, research related to spinal care includes studies on robotic support for rehabilitation exercises, assistance in gait training, and questionnaire-based assessments for spinal pain. Future applications of social robots in spinal care will require diverse HRI research efforts and active involvement from spinal specialists.
5.Human-Robot Interaction and Social Robot: The Emerging Field of Healthcare Robotics and Current and Future Perspectives for Spinal Care
In Ho HAN ; Dong Hwan KIM ; Kyoung Hyup NAM ; Jae Il LEE ; Kye-Hyung KIM ; Jong-Hwan PARK ; Ho Seok AHN
Neurospine 2024;21(3):868-877
Recent advances in robotics technology and artificial intelligence (AI) have sparked increased interest in humanoid robots that resemble humans and social robots capable of interacting socially. Alongside this trend, a new field of robot research called human-robot interaction (HRI) is gaining prominence. The aim of this review paper is to introduce the fundamental concepts of HRI and social robots, examine their current applications in the medical field, and discuss the current and future prospects of HRI and social robots in spinal care. HRI is an interdisciplinary field where robotics, AI, social sciences, design, and various disciplines collaborate organically to develop robots that successfully interact with humans as the ultimate goal. While social robots are not yet widely deployed in clinical environments, ongoing HRI research encompasses various areas such as nursing and caregiving support, social and emotional assistance, rehabilitation and cognitive enhancement for the elderly, medical information provision and education, as well as patient monitoring and data collection. Although still in its early stages, research related to spinal care includes studies on robotic support for rehabilitation exercises, assistance in gait training, and questionnaire-based assessments for spinal pain. Future applications of social robots in spinal care will require diverse HRI research efforts and active involvement from spinal specialists.
6.Human-Robot Interaction and Social Robot: The Emerging Field of Healthcare Robotics and Current and Future Perspectives for Spinal Care
In Ho HAN ; Dong Hwan KIM ; Kyoung Hyup NAM ; Jae Il LEE ; Kye-Hyung KIM ; Jong-Hwan PARK ; Ho Seok AHN
Neurospine 2024;21(3):868-877
Recent advances in robotics technology and artificial intelligence (AI) have sparked increased interest in humanoid robots that resemble humans and social robots capable of interacting socially. Alongside this trend, a new field of robot research called human-robot interaction (HRI) is gaining prominence. The aim of this review paper is to introduce the fundamental concepts of HRI and social robots, examine their current applications in the medical field, and discuss the current and future prospects of HRI and social robots in spinal care. HRI is an interdisciplinary field where robotics, AI, social sciences, design, and various disciplines collaborate organically to develop robots that successfully interact with humans as the ultimate goal. While social robots are not yet widely deployed in clinical environments, ongoing HRI research encompasses various areas such as nursing and caregiving support, social and emotional assistance, rehabilitation and cognitive enhancement for the elderly, medical information provision and education, as well as patient monitoring and data collection. Although still in its early stages, research related to spinal care includes studies on robotic support for rehabilitation exercises, assistance in gait training, and questionnaire-based assessments for spinal pain. Future applications of social robots in spinal care will require diverse HRI research efforts and active involvement from spinal specialists.
7.The Improvement of Intraoperative Motor Evoked Potential after Decompression in Cervical Compressive Myelopathy: Its Significance and Related Factors
Jong Yun KWON ; Dong Hwan KIM ; Kyoung Hyup NAM ; Byung Kwan CHOI ; In Ho HAN
The Nerve 2024;10(2):80-88
Objective:
This study investigated the relationship between intraoperative motor evoked potential (MEP) improvement after decompression surgery for cervical compressive myelopathy (CCM) and postoperative neurological outcomes, and preoperative factors influencing MEP improvement.
Methods:
MEP amplitudes were measured prospectively before and after decompression in 38 patients with CCM. The patients were categorized into three groups according to whether the intraoperative MEP slightly decreased, slightly increased, or significantly increased. Functional outcomes were assessed using the recovery rate (RR) and absolute improvement (AI) of the modified Japanese Orthopaedic Association score on postoperative days (PODs) 7 and 28. The preoperative characteristics and intraoperative MEP changes among the three groups were compared. Additionally, the correlation between the increase in MEP amplitude during surgery and the extent of improvement in functional outcomes was investigated.
Results:
The significantly increased MEP group had a lower baseline MEP amplitude (152.46 µV; p=0.009). In the slightly decreased MEP group, the RR was 27.98 ± 32.29% at POD 7 (p=0.010) and 11.61 ± 69.84% at POD 28 (p=0.200); the AI was 0.79 ± 0.80 at POD 7 (p=0.010) and 0.79 ± 1.42 at POD 28 (p=0.100). In the slightly increased MEP group, the RR was 23.75 ± 28.36% at POD 7 (p=0.040) and 28.47 ± 43.38% at POD 28 (p=0.070); the AI was 1.00 ± 1.21 at POD 7 (p=0.030) and 1.08±1.88 at POD 28 (p=0.100). In the significantly increased MEP group, the RR was 41.06 ± 32.01% at POD 7 (p=0.009) and 59.78 ± 34.52% at POD 28 (p=0.006); the AI was 3.08 ± 2.07 at POD 7 (p=0.009) and 4.33 ± 2.54 at POD 28 (p=0.006). Greater intraoperative MEP improvement correlated with better postoperative recovery at 1 month (RR, p=0.010; AI, p<0.001).
Conclusion
Intraoperative MEP monitoring is valuable for predicting postoperative neurological outcomes in CCM patients, particularly those with lower baseline MEP amplitudes. Significant intraoperative MEP improvements are associated with better functional recovery. These findings underscore the importance of MEP monitoring in optimizing surgical strategies and predicting neurological recovery.
8.Human-Robot Interaction and Social Robot: The Emerging Field of Healthcare Robotics and Current and Future Perspectives for Spinal Care
In Ho HAN ; Dong Hwan KIM ; Kyoung Hyup NAM ; Jae Il LEE ; Kye-Hyung KIM ; Jong-Hwan PARK ; Ho Seok AHN
Neurospine 2024;21(3):868-877
Recent advances in robotics technology and artificial intelligence (AI) have sparked increased interest in humanoid robots that resemble humans and social robots capable of interacting socially. Alongside this trend, a new field of robot research called human-robot interaction (HRI) is gaining prominence. The aim of this review paper is to introduce the fundamental concepts of HRI and social robots, examine their current applications in the medical field, and discuss the current and future prospects of HRI and social robots in spinal care. HRI is an interdisciplinary field where robotics, AI, social sciences, design, and various disciplines collaborate organically to develop robots that successfully interact with humans as the ultimate goal. While social robots are not yet widely deployed in clinical environments, ongoing HRI research encompasses various areas such as nursing and caregiving support, social and emotional assistance, rehabilitation and cognitive enhancement for the elderly, medical information provision and education, as well as patient monitoring and data collection. Although still in its early stages, research related to spinal care includes studies on robotic support for rehabilitation exercises, assistance in gait training, and questionnaire-based assessments for spinal pain. Future applications of social robots in spinal care will require diverse HRI research efforts and active involvement from spinal specialists.
9.Human-Robot Interaction and Social Robot: The Emerging Field of Healthcare Robotics and Current and Future Perspectives for Spinal Care
In Ho HAN ; Dong Hwan KIM ; Kyoung Hyup NAM ; Jae Il LEE ; Kye-Hyung KIM ; Jong-Hwan PARK ; Ho Seok AHN
Neurospine 2024;21(3):868-877
Recent advances in robotics technology and artificial intelligence (AI) have sparked increased interest in humanoid robots that resemble humans and social robots capable of interacting socially. Alongside this trend, a new field of robot research called human-robot interaction (HRI) is gaining prominence. The aim of this review paper is to introduce the fundamental concepts of HRI and social robots, examine their current applications in the medical field, and discuss the current and future prospects of HRI and social robots in spinal care. HRI is an interdisciplinary field where robotics, AI, social sciences, design, and various disciplines collaborate organically to develop robots that successfully interact with humans as the ultimate goal. While social robots are not yet widely deployed in clinical environments, ongoing HRI research encompasses various areas such as nursing and caregiving support, social and emotional assistance, rehabilitation and cognitive enhancement for the elderly, medical information provision and education, as well as patient monitoring and data collection. Although still in its early stages, research related to spinal care includes studies on robotic support for rehabilitation exercises, assistance in gait training, and questionnaire-based assessments for spinal pain. Future applications of social robots in spinal care will require diverse HRI research efforts and active involvement from spinal specialists.
10.Analysis of Recent Improvement of Survival Outcomes in Patients with Pancreatic Cancer Who Underwent Upfront Surgery
Jae Hyup JUNG ; Seung Hyun WON ; Kwangrok JUNG ; Jun Suh LEE ; Jong-Chan LEE ; Jin Won KIM ; Yoo‑Seok YOON ; Jin-Hyeok HWANG ; Ho‑Seong HAN ; Jaihwan KIM
Gut and Liver 2024;18(4):737-746
Background/Aims:
Recently, patients with pancreatic cancer (PC) who underwent resection have exhibited improved survival outcomes, but comprehensive analysis is limited. We analyzed the trends of contributing factors.
Methods:
Data of patients with resected PC were retrospectively collected from the Korean Health Insurance Review and Assessment Service (HIRA) database and separately at our institution. Cox regression analysis was conducted with the data from our institution a survival prediction score was calculated using the β coefficients.
Results:
Comparison between the periods 2013–2015 (n=3,255) and 2016–2018 (n=3,698) revealed a difference in the median overall survival (25.9 months vs not reached, p<0.001) when analyzed with the HIRA database which was similar to our single-center data (2013–2015 [n=119] vs 2016–2018 [n=148], 20.9 months vs 32.2 months, p=0.003). Multivariable analyses revealed six factors significantly associated with better OS, and the scores were as follows: age >70 years, 1; elevated carbohydrate antigen 19-9 at diagnosis, 1; R1 resection, 1; stage N1 and N2, 1 and 3, respectively; no adjuvant treatment, 2; FOLFIRINOX or gemcitabine plus nab-paclitaxel after recurrence, 4; and other chemotherapy or supportive care only after recurrence, 5. The rate of R0 resection (69.7% vs 80.4%), use of adjuvant treatment (63.0% vs 74.3%), and utilization of FOLFIRINOX or gemcitabine plus nab-paclitaxel (25.2% vs 47.3%) as palliative chemotherapeutic regimen, all increased between the two time periods, resulting in decreased total survival prediction score (mean: 7.32 vs 6.18, p=0.004).
Conclusions
Strict selection of surgical candidates, more use of adjuvant treatment, and adoption of the latest combination regimens for palliative chemotherapy after recurrence were identified as factors of recent improvement.

Result Analysis
Print
Save
E-mail