1.Research on network pharmacology of Acori Tatarinowii Rhizoma combined with Curcumae Radix in treating epilepsy.
Qian WANG ; Li-Li YUAN ; Yong-Ling ZHANG ; Wen-Tao FAN
China Journal of Chinese Materia Medica 2019;44(13):2701-2708
The chemical constituents and action targets of Acori Tatarinowii Rhizoma and Curcumae Radix were screened by network pharmacological method,and the mechanism of the combination of Acori Tatarinowii Rhizoma and Curcumae Radix in the treatment of epilepsy was analyzed. All chemical constituents of Acori Tatarinowii Rhizoma and Curcumae Radix were retrieved by TCMSP,and their action targets were screened. Component target PPI network was constructed. Epilepsy-related genes were retrieved from PharmGkb database,and PPI networks of disease targets were drawn by Cytoscape software. Cytoscape software was used to merge the network,screen the core network,and further analyze the gene GO function and KEGG pathway enrichment,which was verified by experimental research. One hundred and five chemical constituents of Acori Tatarinowii Rhizoma and 222 chemical constituents of Curcumae Radix were retrieved. Nineteen compounds were selected as candidate compounds according to OB and DL values. Among them,4 chemical constituents of Acori Tatarinowii Rhizoma and 15 chemical constituents of Curcumae Radix were found. A total of 88 target proteins were retrieved by retrieving TCMSP data,and PPI network was constructed. Through PharmGkb database,29 epilepsy-related genes were retrieved and disease target network was established. Cytoscape software and plug-ins were used for network merging and core network screening,and 69 genes were screened out. Through GO function analysis and KEGG pathway analysis,the mechanism of anti-epilepsy is related to prolactin signaling pathway,HTLV-Ⅰ infection signaling pathway,MAPK signaling pathway and herpes simplex infection signaling pathway. Further experimental verification showed that the serum prolactin level in epileptic rats was significantly increased. The neurons in hippocampal CA1 area degenerated,necrotized and lost 24 hours after epileptic seizure,and some neuron interstitial edema occurred. The possible mechanism of compatibility of Acori Tatarinowii Rhizoma and Curcumae Radix is related to serum prolactin level,MAPK signaling pathway,HTLV-Ⅰ infection and herpes simplex infection. The analysis may be related to viral encephalitis caused by HTLV-Ⅰ virus and herpes simplex infection,which damages nerve cells and causes seizures.
Acorus
;
chemistry
;
Animals
;
CA1 Region, Hippocampal
;
drug effects
;
pathology
;
Curcuma
;
chemistry
;
Drugs, Chinese Herbal
;
pharmacology
;
Epilepsy
;
drug therapy
;
Hippocampus
;
Plant Roots
;
chemistry
;
Rats
;
Rhizome
;
chemistry
2.Icariin Improves Cognitive Impairment after Traumatic Brain Injury by Enhancing Hippocampal Acetylation.
Zi-Gang ZHANG ; Xin WANG ; Jin-Hai ZAI ; Cai-Hua SUN ; Bing-Chun YAN
Chinese journal of integrative medicine 2018;24(5):366-371
OBJECTIVETo examine the effect of icariin (ICA) on the cognitive impairment induced by traumatic brain injury (TBI) in mice and the underlying mechanisms related to changes in hippocampal acetylation level.
METHODSThe modifified free-fall method was used to establish the TBI mouse model. Mice with post-TBI cognitive impairment were randomly divided into 3 groups using the randomised block method (n=7): TBI (vehicle-treated), low-dose (75 mg/kg) and high-dose (150 mg/kg) of ICA groups. An additional sham-operated group (vehicle-treated) was employed. The vehicle or ICA was administrated by gavage for 28 consecutive days. The Morris water maze (MWM) test was conducted. Acetylcholine (ACh) content, mRNA and protein levels of choline acetyltransferase (ChAT), and protein levels of acetylated H3 (Ac-H3) and Ac-H4 were detected in the hippocampus.
RESULTSCompared with the sham-operated group, the MWM performance, hippocampal ACh content, mRNA and protein levels of ChAT, and protein levels of Ac-H3 and Ac-H4 were signifificantly decreased in the TBI group (P<0.05). High-dose of ICA signifificantly ameliorated the TBI-induced weak MWM performance, increased hippocampal ACh content, and mRNA and protein levels of ChAT, as well as Ac-H3 protein level compared with the TBI group (P<0.05).
CONCLUSIONICA improved post-TBI cognitive impairment in mice by enhancing hippocampal acetylation, which improved hippocampal cholinergic function and ultimately improved cognition.
Acetylation ; Acetylcholine ; metabolism ; Animals ; Brain Injuries, Traumatic ; complications ; Choline O-Acetyltransferase ; genetics ; metabolism ; Cognitive Dysfunction ; drug therapy ; etiology ; Flavonoids ; chemistry ; pharmacology ; therapeutic use ; Hippocampus ; pathology ; Histones ; metabolism ; Homeostasis ; drug effects ; Male ; Maze Learning ; drug effects ; Mice ; RNA, Messenger ; genetics ; metabolism
3.Puerarin Up-regulates Methyl-CpG Binding Protein 2 Phosphorylation in Hippocampus of Vascular Dementia Rats.
Hu-Qing WANG ; Meng ZHANG ; Jia-Xin ZHAO ; Hai-Qin WU ; Zhen GAO ; Gui-Lian ZHANG ; Ru ZHANG
Chinese journal of integrative medicine 2018;24(5):372-377
OBJECTIVETo observe the effect of puerarin on methyl-CpG binding protein 2 (MeCP2) phosphorylation (pMeCP2) in the hippocampus of a rat model of vascular dementia (VD).
METHODSThirty-six healthy Sprague-Dawley rats were randomly assigned to the sham-operated group, dementia group and puerarintreated group using a random number table (n=12 per group). The modifified permanent bilateral common carotid artery occlusion method was used to establish the VD model. The sham-operated and dementia groups were given 2 mL/d of saline, while the puerarin-treated group was given 100 mg/(kg•d) of puerarin for 17 days. The learning and memory abilities were evaluated by the Morris water maze test. Hematoxylin-eosin staining, immunohistochemical (IHC) staining and Western blot analysis were carried out to observe changes in neuron morphology and in level of pMeCP2 in the hippocampus, respectively.
RESULTSThe morphologies of rat hippocampal neurons in the puerarintreated group were markedly improved compared with the dementia group. The escape latency of the dementia group was significantly longer than the sham-operated group (P<0.05), while the puerarin-treated group was obviously shorter than the dementia group (P<0.05). Cross-platform times of the dementia group were signifificantly decreased compared with the sham-operated group (P<0.05), while the puerarin-treated group was obviously increased compared with the dementia group (P<0.05). IHC staining showed no significant difference in the number of MeCP2 positive cells among 3 groups (P>0.05). The number of pMeCP2 positive cells in the CA1 region of hippocampus in the dementia group was signifificantly increased compared with the sham-operated group, and the puerarin-treated group was signifificantly increased compared with the dementia group (both P<0.05). Western blot analysis showed no signifificant difference of MeCP2 expression among 3 groups (P>0.05). The expression of pMeCP2 in the dementia group was signifificantly increased compared with the sham-operated group, while it in the puerarin-treated group was signifificantly increased compared with the dementia group (P<0.05).
CONCLUSIONPuerarin could play a role in the protection of nerve cells through up-regulating pMeCP2 in the hippocampus, improving neuron morphologies, and enhancing learning and memory ablities in a rat model of VD.
Animals ; Dementia, Vascular ; drug therapy ; genetics ; physiopathology ; Hippocampus ; pathology ; Isoflavones ; chemistry ; pharmacology ; therapeutic use ; Memory ; drug effects ; Methyl-CpG-Binding Protein 2 ; metabolism ; Phosphorylation ; drug effects ; Rats, Sprague-Dawley ; Up-Regulation ; drug effects
4.Neuroprotective effect of the ethanol extract of Artemisia capillaris on transient forebrain ischemia in mice via nicotinic cholinergic receptor.
Huiyoung KWON ; Ji Wook JUNG ; Young Choon LEE ; Jong Hoon RYU ; Dong Hyun KIM
Chinese Journal of Natural Medicines (English Ed.) 2018;16(6):428-435
Artemisia capillaris Thunberg is a medicinal plant used as a traditional medicine in many cultures. It is an effective remedy for liver problems including hepatitis. Recent pharmacological reports have indicated that Artemisia species can exert various neurological effects. Previously, we reported a memory-enhancing effect of Artemisia species. However, the mechanisms underlying the neuroprotective effect of A. capillaris (AC) are still unknown. In the present study, we investigated the effect of an ethanol extract of AC on ischemic brain injury in a mouse model of transient forebrain ischemia. The mice were treated with AC for seven days, beginning one day before induction of transient forebrain ischemia. Behavioral deficits were investigated using the Y-maze. Nissl and Fluoro-jade B staining were used to indicate the site of injury. To determine the underlying mechanisms for the drug, we measured acetylcholinesterase activity. AC (200 mg·kg) treatment reduced transient forebrain ischemia-induced neuronal cell death in the hippocampal CA1 region. The AC-treated group also showed significant amelioration in the spontaneous alternation of the Y-maze test performance, compared to that in the untreated transient forebrain ischemia group. Moreover, AC treatment showed a concentration-dependent inhibitory effect on acetylcholinesterase activity in vitro. Finally, the effect of AC on forebrain ischemia was blocked by mecamylamine, a nonselective nicotinic acetylcholine receptor antagonist. Our results suggested that in a model of forebrain ischemia, AC protected against neuronal death through the activation of nicotinic acetylcholine receptors.
Acetylcholinesterase
;
metabolism
;
Animals
;
Artemisia
;
Cell Death
;
drug effects
;
Cholinergic Antagonists
;
pharmacology
;
Disease Models, Animal
;
Ethanol
;
chemistry
;
Hippocampus
;
pathology
;
physiopathology
;
Ischemic Attack, Transient
;
drug therapy
;
pathology
;
physiopathology
;
Male
;
Mecamylamine
;
pharmacology
;
Memory
;
drug effects
;
Mice
;
Mice, Inbred C57BL
;
Models, Neurological
;
Neuroprotective Agents
;
administration & dosage
;
pharmacology
;
Phytotherapy
;
Plant Components, Aerial
;
chemistry
;
Plant Extracts
;
administration & dosage
;
pharmacology
;
Receptors, Cholinergic
;
metabolism
5.The role of central cholinergic system in epilepsy.
Ying WANG ; Yi WANG ; Zhong CHEN
Journal of Zhejiang University. Medical sciences 2017;46(1):15-21
Epilepsy is a chronic neurological disorder, which is not only related to the imbalance between excitatory glutamic neurons and inhibitory GABAergic neurons, but also related to abnormal central cholinergic regulation. This article summarizes the scientific background and experimental data about cholinergic dysfunction in epilepsy from both cellular and network levels, further discusses the exact role of cholinergic system in epilepsy. In the cellular level, several types of epilepsy are believed to be associated with aberrant metabotropic muscarinic receptors in several different brain areas, while the mutations of ionotropic nicotinic receptors have been reported to result in a specific type of epilepsy-autosomal dominant nocturnal frontal lobe epilepsy. In the network level, cholinergic projection neurons as well as their interaction with other neurons may regulate the development of epilepsy, especially the cholinergic circuit from basal forebrain to hippocampus, while cholinergic local interneurons have not been reported to be associated with epilepsy. With the development of optogenetics and other techniques, dissect and regulate cholinergic related epilepsy circuit has become a hotspot of epilepsy research.
Acetylcholine
;
physiology
;
Basal Forebrain
;
pathology
;
Brain Chemistry
;
genetics
;
physiology
;
Cholinergic Neurons
;
chemistry
;
classification
;
pathology
;
physiology
;
Epilepsy
;
genetics
;
pathology
;
physiopathology
;
Epilepsy, Frontal Lobe
;
genetics
;
GABAergic Neurons
;
physiology
;
Hippocampus
;
pathology
;
Humans
;
Mutation
;
genetics
;
physiology
;
Neurons
;
Non-Neuronal Cholinergic System
;
genetics
;
physiology
;
Receptors, Muscarinic
;
genetics
;
physiology
;
Receptors, Nicotinic
;
genetics
;
physiology
;
Synaptic Transmission
;
genetics
;
physiology
6.Influence of chronic lead exposure in rats during the developmental stage on expression of leptin in plasma, cerebrospinal fluid, and hippocampus.
Xue-Mei SHI ; Ya-Wen FU ; Lai-Rong HUANG ; Hui YANG
Chinese Journal of Contemporary Pediatrics 2016;18(8):762-769
OBJECTIVETo investigate the influence of lead exposure in rats during the developmental stage on the expression of leptin in plasma, cerebrospinal fluid, and hippocampus, as well as investigating whether leptin is associated with the mechanism of cognitive impairment induced by lead exposure.
METHODSThe rat model of cognitive impairment after chronic lead exposure was established by adding lead acetate into drinking water. According to the concentration of lead acetate in drinking water, the rats were divided into control (0 ppm), low-lead (50 ppm), medium-lead (200 ppm), and high-lead groups (1 000 ppm), with 16 rats in each group. Atomic absorption spectrometry was used to measure the content of lead in the plasma, cerebrospinal fluid and hippocampus. ELISA was used to measure the level of leptin in the plasma and cerebrospinal fluid. Immunohistochemistry was used to observe the distribution of leptin protein in the hippocampus. Western blot was used for relative quantification of leptin proteins in the hippocampus.
RESULTSCompared with the control group, the lead exposure groups showed significant increases in the content of lead in blood, cerebrospinal fluid, and hippocampus (P<0.01), as well as significant reductions in the levels of leptin in plasma and cerebrospinal fluid (P<0.05). The results of immunohistochemical staining showed that leptin was mainly distributed in the cytoplasm of pyramidal neurons in the hippocampal CA region. The results of Western blot showed that compared with the control group, the three lead exposure groups showed a slight increase in the protein expression of leptin in the hippocampus (P>0.05).
CONCLUSIONSLead exposure can reduce the levels of leptin in plasma and cerebrospinal fluid in rats, which may be associated with the mechanism of cognitive impairment induced by lead exposure.
Animals ; Apoptosis ; drug effects ; Cognition ; drug effects ; Female ; Hippocampus ; chemistry ; drug effects ; pathology ; Lead ; blood ; toxicity ; Leptin ; analysis ; blood ; cerebrospinal fluid ; Male ; Rats ; Rats, Sprague-Dawley
7.Protective effects of astragalus extract against intermittent hypoxia-induced hippocampal neurons impairment in rats.
Qiang ZHANG ; Wen-yuan GAO ; Yun ZHANG ; Bao-yun CHEN ; Zhe CHEN ; Wei-san ZHANG ; Shu-li MAN
Chinese Medical Journal 2013;126(8):1551-1554
BACKGROUNDIntermittent hypoxia is the main pathophysiological cause of the obstructive sleep apnea syndrome. Astragalus shows improvement of spatial learning and memory abilities under intermittent hypoxia. Our study aimed to investigate the protective effect of astragalus against intermittent hypoxia induced-hippocampal neurons impairment in rats and lay the theoretical foundation for the sleep apnea improvement in cognitive function by astragalus.
METHODSMale Wistar rats were divided into 4 groups: blank control group, normoxia group, intermittent hypoxia group and astragalus treated intermittent hypoxia group. After 6-week treatment, apoptosis of neurons was evaluated by terminal deoxynucleotidyl-transferase-mediated dUTP nick end-labeling (TUNEL) assay. Furthermore, the expression of HIF-1a was detected by real-time reverse transcription polymerase chain reaction (RT-PCR) at the mRNA level as well as by immunohistochemistry (IHC) and Western blotting at the protein level.
RESULTSHPLC analysis indicated that astragaloside IV, astragaloside II and astragaloside I were the main compounds in astragals extract. Astragalus extract reduced the apoptosis of hippocampal neurons (P < 0.05) and decreased the expression of HIF-1a at both the mRNA and protein levels in hippocampus compared with non-treated groups (P < 0.05).
CONCLUSIONAstragalus protects against intermittent hypoxia-induced hippocampal neurons impairment in rats.
Animals ; Apoptosis ; drug effects ; Astragalus Plant ; chemistry ; Hippocampus ; drug effects ; metabolism ; pathology ; Hypoxia ; complications ; Hypoxia-Inducible Factor 1, alpha Subunit ; analysis ; Male ; Phytotherapy ; Plant Extracts ; therapeutic use ; Rats ; Rats, Wistar ; Sleep Apnea, Obstructive ; drug therapy
8.Effect of Angelica on hippocampal neurons and gliocytes of neonatal rats after intrauterine hypoxia.
Jing MA ; Cheng-Shi DING ; Hong YU
Chinese Journal of Applied Physiology 2012;28(4):362-364
Angelica
;
chemistry
;
Animals
;
Animals, Newborn
;
Cell Count
;
Female
;
Fetal Hypoxia
;
pathology
;
Hippocampus
;
cytology
;
drug effects
;
Male
;
Neuroglia
;
cytology
;
Neurons
;
cytology
;
Pregnancy
;
Rats
;
Rats, Sprague-Dawley
9.Effects of early environment on the expression of brain-derived neurotrophic factor and its receptor and brain development.
Chinese Journal of Contemporary Pediatrics 2012;14(9):703-707
OBJECTIVETo study the effect of early environment on the learning-memory ability of rats and the expression of brain-derived neurotrophic factor (BDNF) and its receptor, tyrosine kinase receptor B (TrkB), and to explore the influence of early environment on development of rat brain in developing stage and possible regulation mechanisms.
METHODSForty-five newborn Sprague-Dawley rats were randomly divided into three groups (15 rats in each group): enriched environment group (EE group), isolated environment group (IE group) and normal control group (NC group). The pups were nurtured separately in their groups. The learning-memory abilities of the rats were measured by "Y"-arm maze test 28 to 29 days after birth. The number of neural cells and the expression of BDNF and TrkB in the hippocampal CA3 and frontal lobe were were detected by Nissl's staining and immunohistochemistry respectively.
RESULTSThe results of the "Y"-arm maze test showed that rats in the EE group needed less training times, and retained a higher percentage of memory than the other two groups(P<0.01). Rats in the IE group needed more training times, and retained a lower percentage of memory than the NC group (P<0.01). By Nissl's staining, the numbers of neural cells in the hippocampal CA3 and frontal lobe were highest in the EE group followed by the NC group. They were lowest in the IE group (P<0.01). By immunohistochemistry, the expression of BDNF in the hippocampal CA3 and frontal lobe were highest in the EE group followed by the NC group. It was lowest in the IE group (P<0.01). Results were similar for expression of TrkB.
CONCLUSIONSEarly environment can affect the long-term brain development and brain function of rats by influencing the expression of BDNF and its receptor TrkB in the hippocampus and frontal lobe.
Animals ; Body Weight ; Brain ; growth & development ; Brain-Derived Neurotrophic Factor ; analysis ; Female ; Hippocampus ; chemistry ; pathology ; Male ; Maze Learning ; Rats ; Rats, Sprague-Dawley ; Receptor, trkB ; analysis ; Social Isolation
10.Effect of sailuotong capsule on Glu and GABA levels as well as NMDA receptor subtypes expression in recovery period of rat multiple cerebral infarction.
Li XU ; Wen-Ting SONG ; Cheng-Ren LIN ; Jian-Xun REN ; Jian-Xun LIU ; Ming-Jiang YAO ; Guang-Rui WANG
Acta Pharmaceutica Sinica 2012;47(7):870-877
The rat model of multi-infarct was adopted in this study to elucidate the protective mechanism of Sailuotong capsule (Sailuotong) in recovery period of multiple cerebral infarction. The effects of Sailuotong on levels of Glu, GABA and the expression of NMDA receptor subtypes including NR1, NR2A and NR2B, were detected. The multi-infarct model rats were established by injecting embolizing microsphere via internal carotid artery, and were given Sailuotong treatment (16.5 and 33.0 mg x kg(-1)) for 60 days. The pathological changes in brain ultrastructure were observed by transmission electron microscope. The levels of Glu and GABA in brain tissue were measured with high performance liquid chromatography. The expression of NMDA receptors including NR1, NR2A and NR2B in neurons was evaluated by immunohistochemical staining. Compared with the sham rats, abnormal changes were observed in ultrastructures of neurons, neuroglia cells and synapses of model rat brains. Moreover, significant decrease of Glu and GABA, as well as the elevated expression of NR1, NR2A and NR2B were detected in brain tissues. Sailuotong (16.5 and 33.0 mg x kg(-1)) could improve ultrastructure of cerebral tissue, facilitate synthesis of Glu and GABA, and down-regulate expression of NR1, NR2A and NR2B in neurons. The results demonstrated that Sailuotong could exert neuroprotective effects to some extent in the recovery phase of multiple cerebral infarction by promoting expression of NMDA receptors and synthesis of Glu and GABA.
Animals
;
Capsules
;
Cerebral Cortex
;
metabolism
;
Cerebral Infarction
;
metabolism
;
pathology
;
Drug Combinations
;
Drugs, Chinese Herbal
;
administration & dosage
;
pharmacology
;
Ginkgo biloba
;
chemistry
;
Glutamic Acid
;
metabolism
;
Hippocampus
;
metabolism
;
Male
;
Neurons
;
metabolism
;
pathology
;
Neuroprotective Agents
;
administration & dosage
;
pharmacology
;
Panax
;
chemistry
;
Plants, Medicinal
;
chemistry
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, N-Methyl-D-Aspartate
;
classification
;
metabolism
;
Synapses
;
metabolism
;
pathology
;
gamma-Aminobutyric Acid
;
metabolism

Result Analysis
Print
Save
E-mail