1.Changes in ferroptosis in hippocampal neurons of vascular dementia model rats treated with Tongmai Kaiqiao Pill
Nannan ZHAO ; Yanjie LI ; Hewei QIN ; Bochao ZHU ; Huimin DING ; Zhenhua XU
Chinese Journal of Tissue Engineering Research 2025;29(7):1401-1407
BACKGROUND:Research has demonstrated a close association between ferroptosis and vascular dementia.Tongmai Kaiqiao Pill has a certain effect on improving the cognitive function of vascular dementia patients,but its mechanism is unclear. OBJECTIVE:To explore the interventional effects and molecular mechanisms of Tongmai Kaiqiao Pill for vascular dementia based on the regulation of ferroptosis by the nuclear factor erythroid-2-related factor 2(Nrf2)/heme oxygenase-1(HO-1)/glutathione peroxidase 4(GPX4)signaling pathway. METHODS:Among eighty-four SD male rats,12 rats were used as the sham-operated group,and the rest of them were prepared as a model of vascular dementia by the modified 2-VO method,and then randomly divided into the model group,the Tongmai Kaiqiao Pills high-,moderate-,and low-dosage(27.6,13.8,and 6.9 g/kg)groups,the combined group(Tongmai Kaiqiao Pill high-dosage+ML385,20 mg/kg),and the donepezil hydrochloride group(0.45 mg/kg).The drug was given once a day by intragastric administration.The combined group was also intraperitoneally injected Nrf2 inhibitor ML385,once a day,for 4 weeks.Morris water maze was used to detect the learning memory ability of rats.Hematoxylin-eosin staining was used to observe the histopathological changes in the hippocampus of rats in each group.Colorimetric assay was used to detect the content of reduced glutathione,ferrous ion(Fe2+),and malondialdehyde in the serum of rats.Prussian blue staining was used to detect the iron deposition in the hippocampal tissue of rats.Transmission electron microscopy was used to observe the ultrastructural changes of mitochondria in rat hippocampal tissues.Western blot assay was used to detect the protein expression levels of Nrf2,HO-1,GPX4,XCT,and ferritin heavy chain 1(FTH1)in rat hippocampal tissues. RESULTS AND CONCLUSION:(1)In comparison to the sham operation,rats in the model group exhibited a significantly prolonged latency period(P<0.05)and a reduced number of platform crossings(P<0.05).Additionally,the hippocampal tissues of these rats displayed loosely organized structure,deeply stained cell nuclei,and solidified or lysed chromatin.Ferri ions aggregated in CA1 region.There were atrophied mitochondria with dissolved cristae and thickened mitochondrial membranes.Fe2+,malondialdehyde,and reduced glutathione levels in rat serum were found to be elevated(P<0.05).A significant reduction in the expression of GPX4,HO-1,XCT,Nrf2,and FTH1 proteins was detected in the hippocampus(P<0.05).(2)Compared to the model group,the average escape latency of the rats was significantly reduced following intervention with Tongmai Kaiqiao Pills and donepezil hydrochloride(P<0.05),with an increased number of platform crossings(P<0.05).Hippocampal neurons showed significant recovery.Notably,iron aggregation in the CA1 region was significantly reduced,and mitochondrial structure and function were improved.There were significant reductions in Fe2+and malondialdehyde levels,while the levels of GPX4,HO-1,XCT,Nrf2,and FTH1 in rat hippocampal tissues,and reduced glutathione in serum were significantly increased(P<0.05).(3)The high-dose Tongmai Kaiqiao Pills exhibited a treatment effect comparable to that of donepezil hydrochloride(P>0.05),with a significant prolongation of water maze escape latency(P<0.05),a reduced number of platform crossings(P<0.05),and insignificant neuronal pathological changes in the CA1 area.However,the combined group showed increased iron deposition,elevated malondialdehyde and Fe2+levels in blood serum(P<0.05),reduced glutathione content(P<0.05),hippocampal tissue mitochondrial atrophy,and reduced expression of Nrf2,XCT,HO-1,GPX4,and FTH1 proteins(P<0.05).Within a certain range,higher doses of Tongmai Kaiqiao Pills demonstrated a more pronounced effect,comparable to the efficacy of high-dose donepezil hydrochloride.(4)It is concluded that Tongmai Kaiqiao Pills have been shown to mitigate histopathological changes in the rat hippocampus and enhance cognitive function in rats with vascular dementia.The mechanism of action is likely associated with the suppression of ferroptosis through the activation of the Nrf2/HO-1/GPX4 signaling pathway.
2.Jiawei Chunze Decoction treats urinary retention after spinal cord injury in rats based on the regulation of endoplasmic reticulum stress apoptosis
Bochao ZHU ; Yanjie LI ; Hewei QIN ; Nannan ZHAO ; Haoyuan LIU ; Zhenhua XU ; Yupu WANG
Chinese Journal of Tissue Engineering Research 2025;29(2):371-378
BACKGROUND:Preliminary clinical observations found that Jiawei Chunze Decoction is an effective formula for clinical treatment of urinary retention after spinal cord injury.Animal experiments have found that the phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt)signaling pathway is closely related to the degree of bladder dysfunction. OBJECTIVE:To further investigate the effects of Jiawei Chunze Decoction on bladder function and PI3K/Akt signaling pathway in rats with urinary retention. METHODS:Sixty female Sprague-Dawley rats were randomly divided into sham operation group,model group,Jiawei Chunze Decoction low-dose group,Jiawei Chunze Decoction high-dose group and agonist group.In the sham operation group,the spinal cord was exposed but not transected.In the other groups,the modified Hassan Shaker spinal cord transection method was used to prepare the model of sacral medullary injury.At 24 hours after modeling,the sham operation group and model group were intragastrically given equal volume of normal saline,Jiawei Chunze Decoction low-dose and high-dose groups were given Jiawei Chunze Decoction granules containing 14.4 and 28.8 g/kg,respectively,via intragastric administration for 4 weeks,and the agonist group was treated with an intraperitoneal injection of PI3K/Akt signaling pathway agonist 740Y-P at a dose of 0.02 mg/kg.After 4 weeks of treatment,the maximum bladder capacity,leakage point pressure and bladder compliance of rats in each group were detected by urine flow dynamics.The minimum bladder contraction tension and frequency of rats in each group were detected by detrusor pull test.The pathological changes of the rat bladder in each group were observed by hematoxylin-eosin staining.The concentrations of GRP78,CHOP and Caspase-12 in serum were detected by ELISA,and the mRNA and protein expressions of PI3K,Akt,GRP78,CHOP and Caspase-12 in bladder tissues were detected by RT-PCR and western blot,respectively. RESULTS AND CONCLUSION:Compared with the sham operation group,the maximum bladder volume,bladder compliance and minimum systolic tension of rats in the model group were increased(P<0.05),and the leakage point pressure and bladder contraction frequency were decreased(P<0.05);serum GRP78,CHOP,and Caspase-12 levels were also increased(P<0.05).The arrangement of bladder epithelial cells in the model group was disordered,and there was monocyte infiltration between cells,tissue edema,and detrusor tract atrophy.The mRNA and protein expressions of PI3K and Akt in bladder tissues were significantly decreased in the model group compared with the sham operation group,while those of GRP78,CHOP and Caspase-12 were increased(P<0.05).Compared with the model group,the maximum bladder volume,bladder compliance and minimum systolic tension of rats were decreased in the Jiawei Chunze Decoction low-dose,high-dose and agonist groups after 4 weeks of intervention(P<0.05),while the leakage point pressure and bladder contraction frequency were increased(P<0.05);serum GRP78,CHOP,Caspase-12 levels were decreased(P<0.05).The bladder epithelial cells in the three intervention groups were distributed evenly,arranged neatly,with less inflammatory cell infiltration and fuller detrusor muscle bundle.Compared with the model group,the mRNA and protein expressions of PI3K and Akt were increased in the three intervention groups,while those of GRP78,CHOP and Caspase-12 were decreased(P<0.05).The Jiawei Chunze Decoction high-dose group was better than the Jiawei Chunze Decoction low-dose group and shared the similar results with the agonist group.To conclude,Jiawei Chunze Decoction can improve the bladder function of rats with urinary retention after spinal cord injury,and the mechanism may be related to reducing the occurrence of endoplasmic reticulum stress in bladder tissue through the PI3K/Akt signaling pathway,and then alleviating apoptosis.
3.Traditional Chinese medicine monomer in treatment of neuroinflammation after spinal cord injury:effects of nuclear transcription factor kappa B signaling pathway
Zhenhua XU ; Yanjie LI ; Hewei QIN ; Haoyuan LIU ; Bochao ZHU ; Yupu WANG
Chinese Journal of Tissue Engineering Research 2025;29(3):590-598
BACKGROUND:Targeted therapy based on nuclear transcription factor kappa B signaling pathway to explore neuroinflammation is increasingly worth exploring,and the advantages of Chinese medicine such as many targets,wide range,rich mechanisms,and few side effects have great potential in the treatment of various diseases. OBJECTIVE:Based on the nuclear transcription factor kappa B signaling pathway,this paper systematically expounded and summarized the research progress of kaempferol,safflower yellow,baicalin,and triptolide in the treatment of neuroinflammation after spinal cord injury. METHODS:Search terms"spinal cord injury,inflammation,anti-inflammatory,traditional Chinese medicine monomer,monomeric compound,NF-κB signaling pathway,flavonoids,glycosides,phenols,esters,alkaloids"were searched in CNKI and PubMed databases.Totally 67 articles were finally included. RESULTS AND CONCLUSION:(1)The role of nuclear transcription factor kappa B signaling pathway in the nervous system is complex and diverse,which can regulate neutrophils,microglia,astrocytes,and macrophages,and mediate the occurrence and development of inflammation after injury.(2)The effects of traditional Chinese medicine monomers such as baicalin on the degradation of nuclear transcription factor kappa B inhibitory protein,the inhibition of phosphorylation process by safflowerin on nuclear transcription factor kappa B signaling pathway,and the inhibition of kaempferol on nuclear transcription factor kappa B signaling pathway p65 nuclear translocation can reduce the impact of inflammatory response on the body,thereby promoting the recovery of neurological function.(3)The nuclear transcription factor kappa B signaling pathway can promote inflammation and immune cell migration and activation in the early stage of injury,and can promote the repair of injury site and the occurrence of fibrosis in the middle and late stages of injury.Appropriate activation of the nuclear transcription factor kappa B signaling pathway can promote the release of inflammatory factors,improve the antioxidant capacity of cells,and promote the activation of immune cells,but the over-activated nuclear transcription factor kappa B signaling pathway can easily lead to the occurrence and continuation of chronic inflammation and the inhibition of apoptosis.(4)Future research can further explore how to accurately regulate the activation level of nuclear transcription factor kappa B signaling pathway,how to achieve precise intervention for nervous system inflammation and injury,and can also focus on the preparation of traditional Chinese medicine monomers and the mechanism of action of traditional Chinese medicine monomers on signaling pathways,in order to provide more effective treatment strategies for the rehabilitation and functional recovery of neurological diseases.
4.Effects of Lipopharyngeal Qibi Formula on swallowing function and apoptosis in central cortical swallowing neurons in rats after stroke
Yanjie LI ; Sijin LI ; Xiaoqiong HUA ; Hewei QIN ; Xiaoqin JIN ; Zhixin ZHANG
Chinese Journal of Tissue Engineering Research 2024;28(16):2527-2533
BACKGROUND:The treatment of post-stroke dysphagia with Lipopharyngeal Qibi Formula has achieved good efficacy,and 5-hydroxytryptamine in peripheral serum and neurotransmitters in the nucleus tractus solitarius are closely related to swallowing.Therefore,this study was conducted to explore the modulatory effects of peripheral serum and nucleus tractus solitarius neurotransmitters in swallowing by using modern medical experimental methods such as molecular biology,thereby developing new ideas for the exploration of their mechanisms. OBJECTIVE:To verify the therapeutic effect of Lipopharyngeal Qibi Formula on post-stroke dysphagia and to investigate its mechanism of action. METHODS:Thirty-eight Sprague-Dawley rats were randomly divided into model group(n=14),treatment group(n=14)and sham-operated group(n=10).Animals in the model and treatment groups were modeled by reperfusion after 90 minutes of transient cerebral ischemia by wire bolus method.At 6 hours after modeling,neurological function was scored,and rats with a score of 2 were selected for subsequent experiments.The treatment group was given compound Lipopharyngeal Qibi Formula by gavage starting from the 2nd day after modeling and the remaining two groups were given normal saline by gavage.Changes in body mass,24-hour food and water intake were recorded on days 2,7,14 and 30.The swallowing initiation response time and the number of swallows were detected using a biosignal collector and a tonic transducer on days 14 and 30.After the swallowing test,the ischemic area of the brain in each group was measured by TTC staining.The expression of 5-hydroxytryptamine in the nucleus tractus solitarius of the medulla oblongata was measured by immunohistochemistry.The mRNA and protein expression levels of BCL-2 and BAX in the insula,premotor cortex,cingulate cortex and thalamus of rats in each group were measured by RT-PCR and Western blot,respectively. RESULTS AND CONCLUSION:Compared with the sham-operated group,the body mass,24-hour food intake and water intake were reduced,the swallow initiation response time was prolonged,and the number of swallows was reduced in the treatment and model groups at day 14 of gavage(P<0.05).Compared with the model group,the body mass,24-hour food intake and water intake of rats were increased in the treatment group at day 30 of gavage(P<0.05),but were still lower than those in the sham-operated group.Compared with the model group,the swallow initiation reaction time was shortened and the number of swallows increased in the treatment group,but the number of swallows was still significantly lower than that in the sham-operated group(P<0.05).Cerebral ischemia area was reduced in the treatment group compared with the model group,and the number of 5-hydroxytryptamine-positive cells in the nucleus tractus solitarius of the medulla oblongata was increased in the treatment group compared with the model group,but it was still significantly lower than that in the sham-operated group(P<0.05).Compared with the model group,the expression of BCL-2 mRNA and protein in the insula,cingulate cortex and thalamus of rats in the treatment group were significantly increased,the expression of BAX mRNA and protein were significantly decreased,and the BCL-2/BAX ratio was significantly increased(P<0.05).To conclude,the Chinese herbal compound Lipopharyngeal Qibi Formula could improve the number of swallows and swallowing initiation response time,as well as 24-hour food intake,body mass and other swallowing-related indexes in rats with post-stroke dysphagia.The mechanism of action may be achieved by improving the area of cerebral ischemia,inhibiting the apoptosis of neuronal cells in the insula,cingulate cortex and thalamus of rats,thus improving the regulation of the higher centers on the medulla oblongata swallowing center,and regulating the level of 5-hydroxytryptamine in the nucleus tractus solitarius.
5.The Role of SIRT1 in Vascular Cognitive Impairment
Xinyu YANG ; Yanjie LI ; Hewei QIN ; Dandan LIU ; Nannan ZHAO ; Jingjing JIANG
Medical Journal of Peking Union Medical College Hospital 2024;15(5):1124-1130
Vascular cognitive impairment (VCI) denotes a wide range of cognitive deficiencies resulting from cerebrovascular risk factors and cerebrovascular diseases. Sirtuin 1 (SIRT1), as a deacetylase, can mediate the deacetylation of histones and non-histone proteins. It is involved in regulating multiple pathophysiological processes of VCI, including neuroinflammation reduction, oxidative stress inhibition, cell apoptosis decrease, and blood-brain barrier protection, serving as a target for VCI treatment. This paper summarizes SIRT1 and the molecular mechanisms of targeting SIRT1 in order to provide a reference for the clinical treatment of VCI.
6.Advances in the mechanism-of-action of circRNA in Parkinson's disease
Juan LIU ; Yanjie LI ; Hewei QIN ; Luyao MA ; Nannan ZHAO ; Zhenhua XU
Chinese Journal of Comparative Medicine 2024;34(2):161-166
PD is a neurodegenerative disease characterized by degenerative death of dopaminergic neurons in the substantia nigra,exhibiting a range of motor and non-motor symptoms with serious effects on quality of life.circRNA is a covalently closed-loop non-coding RNA that plays a major role in PD progression.This article reviews the involvement of circRNA in oxidative stress,regulation of transcription,neuroinflammation,autophagy,and α-synuclein.
7.Xueguan Ruanhua Pills improve atherosclerosis by inhibiting ferroptosis through the Nrf2/xCT/GPX4 pathway
Mengyan SUN ; Hewei QIN ; Yanjie LI ; Mengnan WANG ; Dandan LIU ; Yang GAO
Journal of Beijing University of Traditional Chinese Medicine 2024;47(3):383-393
Objective We investigated the effects of Xueguan Ruanhua Pills(XGRHW) on ferroptosis in ApoE-/- atherosclerotic mice through the nuclear factor E2 related factor 2 (Nrf2)/xCT/glutathione peroxidase 4 (GPX4) signaling pathway.Methods Ten male C57BL/6J mice in the normal group were fed normal chow. Additionally, 50 ApoE-/- mice were fed high-fat chow for 12 weeks, and were divided into the following five groups (10 mice per group): the model group, the XGRHW low-dose (2.34g/kg) group, the XGRHW high-dose (4.68 g/kg) group, the XGRHW high-dose combined with the Nrf2 inhibitor ML385 (0.03 g/kg) group, and the ferrostatin-1 (1 mg/kg) group. Drugs were administered for 6 weeks. The blood levels of four types of lipids were detected by an automatic lipid analyzer, lipid deposition in the aorta was observed by Oil Red O staining, histomorphological changes in the aortic sinus were observed by HE staining, the serum levels of Fe2+, MDA, GSH, and SOD were determined by colorimetric assays, and the expression levels of FTH1 and FTL in the aortic sinus were observed by immunofluorescence. The protein levels of Nrf2, xCT, and GPX4 in mouse aortic tissues were detected by Western blotting. The ultrastructural changes of aortic mitochondria were observed by transmission electron microscopy.Results Compared with the normal group, mice in the model group showed obvious lipid plaque deposition in the aorta, severely calcified lesions in the aortic sinus, elevated serum levels of TC, TG, LDL-C, Fe2+, and MDA, decreased levels of HDL-C, SOD, and GSH (P<0.01), and decreased protein expressions of aortic Nrf2, xCT, and GPX4 as well as the iron storage proteins FTH1 and FTL (P<0.01), and serve damage to mitochondrial structure and morphology. Compared with the model group, the relative aortic plaque area was decreased, calcified lesions in the aortic sinus were decreased, serum levels of TC, TG, LDL-C, Fe2+, and MDA were decreased, and HDL-C, SOD, and GSH levels were increased in the XGRHW low-dose and high-dose and ferrostatin-1 groups (P<0.05 or P<0.01), and Nrf2, xCT, GPX4, and the iron storage proteins FTH1 and FTL were upregulated in aortic tissues (P<0.05 or P<0.01), and mitochondrial structure approaching normal. In the XGRHW high-dose+ML385 group, compared with the XGRHW high-dose group, the levels of blood lipids and lipid peroxidation were increased and the protein levels of Nrf2, xCT, and GPX4 in aortic tissue and the iron storage proteins FTH1 and FTL were decreased (P<0.01), and mitochondrial structure was damaged indicating that ML385 could inhibit the therapeutic effect of the XGRHW in atherosclerotic mice.Conclusion The XGRHW can improve blood lipid levels and reduce the degree of arterial plaque lesions in atherosclerotic mice, and its mechanism of action may be related to activation of the Nrf2/xCT/GPX4 pathway to inhibit ferroptosis.
8.Mechanistic of Modified Chunzetang in Treating Spinal Cord Injury-induced Urinary Retention in Rats Based on JNK/p38 MAPK Signaling Pathway
Yupu WANG ; Yanjie LI ; Hewei QIN ; Haoyuan LIU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(19):30-38
ObjectiveTo investigate the effects of modified Chunzetang on urinary retention in rats with spinal cord injury (SCI) and the c-Jun N-terminal kinase/p38 mitogen-activated protein kinase (JNK/p38 MAPK) signaling pathway. MethodBefore modeling, 10 of the 70 female SD rats were randomly selected to assign to the blank group, and 10 to the sham group. The remaining 50 rats were used to prepare a SCI-induced urinary retention model using the spinal cord transection method. The model rats were randomly divided into model group, low-dose modified Chunzetang group, high-dose modified Chunzetang group, and inhibitor group. After modeling, the blank group, sham group, and inhibitor group were given 2 mL of saline by gavage. The high-dose and low-dose groups of modified Chunzetang were given modified Chunzetang at 28.8 g·kg-1 and 14.4 g·kg-1 by gavage, respectively. The inhibitor group was injected intraperitoneally with the JNK inhibitor SP600125 twice a week at a dose of 15 mg·kg-1. All rats were gavaged for a total of 28 days. Urodynamic and bladder muscle tension tests were conducted to evaluate bladder function. Hematoxylin-eosin (HE) staining was performed to observe the morphology of bladder smooth muscle tissue. Enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of JNK, phosphorylated (p)-p38 MAPK, B cell lymphoma-2 (Bcl-2), and cysteinyl aspartate-specific proteinase-3 (Caspase-3). Western blot was used to detect the expression levels of p-JNK, p-p38 MAPK, ETS-like protein-1 (ELK-1), and activator protein-1 (AP1) in the detrusor muscle. Immunofluorescence was used to detect the expression levels of p-JNK, p-p38 MAPK, and AP1. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay was conducted to measure cell apoptosis. ResultCompared with blank group and sham group, the model group showed a significant increase in maximum bladder capacity and bladder compliance, and a significant decrease in leak point pressure. The minimum contraction force was increased, and the contraction frequency was significantly decreased (P<0.01). The structure of bladder smooth muscle was disordered, with a large number of vacuolar cells, tissue edema, mononuclear cell infiltration, obvious hemorrhage, and a trend towards fibrosis in connective tissue. TUNEL positive cells increased significantly. The protein expression levels of p-JNK, p-p38 MAPK, AP1, and ELK-1 were significantly increased (P<0.01). Compared with model group, all intervention groups showed significant improvement in urodynamic and bladder muscle contraction tests. In the low-dose modified Chunzetang group, the levels of p-p38 MAPK and Caspase-3 was decreased (P<0.05,P<0.01). The levels of JNK, p-p38 MAPK and Caspase-3 in the high-dose group were significantly decreased (P<0.01), and the level of Bcl-2 was significantly increased (P<0.01). The expression levels of p-JNK, p-p38 MAPK, and AP1 proteins were significantly reduced (P<0.01), and ELK-1 protein expression was decreased (P<0.05). The positive rate of p-JNK and AP1 receptors was significantly decreased (P<0.01). The positive cell rate was significantly decreased (P<0.01). The high-dose modified Chunzetang group was positioned between the low-dose group and the inhibitor group, with no significant difference compared to the inhibitor group. ConclusionModified Chunzetang can improve urinary retention in SCI and enhance the contraction force of bladder smooth muscle. This effect is related to the inhibition of the JNK/p38 MAPK signaling pathway activation, thereby reducing apoptosis of bladder smooth muscle cells.
9.Tongmai Kaiqiao Pills Treat Vascular Dementia in Rats by Regulating Mitochondrial Autophagy via HIF-1α/BNIP3 Signaling Pathway
Huimin DING ; Yanjie LI ; Hewei QIN ; Chenyuan HAO ; Nannan ZHAO ; Zhenhua XU ; Mengyan SUN
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(21):52-60
ObjectiveTo observe the effects of Tongmai Kaiqiao pills on the hypoxia-inducible factor-1α (HIF-1α)/adenovirus E1B 19 kD-interacting protein 3 (BNIP3) signaling pathway and mitochondrial autophagy in the hippocampus of the rat model of vascular dementia (VD). MethodNinety male SD rats underwent adaptive feeding for one week before the study. Ten rats were randomly assigned to the sham group, where the common carotid artery was isolated without ligation. The remaining rats were subjected to sequential ligation of the common carotid artery for the modeling of VD. The successfully modeled rats were randomly assigned into the following groups: model, high-, medium-, and low-dose (27.6, 13.8, 6.9 g·kg-1, respectively) Tongmai Kaiqiao pills, donepezil hydrochloride (0.45 mg·kg-1), and combination (27.6 g·kg-1 Tongmai Kaiqiao pills + 2.5 mg·kg-1 HIF-1α inhibitor YC-1) groups. After 4 weeks of treatment, samples were collected. Nissl staining and hematoxylin-eosin staining were performed to observe the loss of neurons and pathological changes, respectively, in the hippocampal region. Western blot was employed to determine the protein levels of HIF-1α, BNIP3, Beclin-1, and microtubule-associated protein 1 light chain 3B (LC3B) in the hippocampal tissue. Transmission electron microscopy was used to observe the mitochondrial ultrastructure and the number of autophagosomes in the hippocampal tissue. Immunofluorescence was employed to observe the fluorescence intensity of HIF-1α, BNIP3, and LC3B in the hippocampal tissue. ResultCompared with the sham group, the model group showed prolonged escape latency (P<0.01), decreased number of platform crossings (P<0.01), reduced and disarranged neuronal layers in the hippocampal region, decreased number of Nissl bodies, disrupted mitochondrial cristae, damaged mitochondrial double-membrane structures, increased number of autophagosomes, upregulated expression of HIF-1α, BNIP3, beclin1, and LC3B (P<0.05, P<0.01), and enhanced fluorescence intensity of HIF-1α, BNIP3, and LC3B (P<0.05, P<0.01). Compared with the model group, Tongmai Kaiqiao pills and donepezil hydrochloride shortened the searching time for the platform (P<0.01) and increased the number of platform crossings (P<0.01). Moreover, the drugs increased the number of neurons with normal morphology and orderly arrangement and the number of Nissl bodies, alleviated the damage, increased the number of autophagosomes, upregulated the expression of HIF-1α, BNIP3, Beclin1, and LC3B (P<0.05, P<0.01), and enhanced the fluorescence intensity of HIF-1α, BNIP3, and LC3B (P<0.05, P<0.01). Compared with high-dose Tongmai Kaiqiao pills, the combination group prolonged the escape latency (P<0.01), reduced the number of crossing platforms (P<0.01), decreased the number of hippocampal neurons, aggravated the damage, decreased the number of Nissl bodies and autophagosomes, downregulated the expression of HIF-1α, BNIP3, beclin1, and LC3B (P<0.01), and decreased the fluorescence intensity of HIF-1α, BNIP3, and LC3B (P<0.01). ConclusionTongmai Kaiqiao pills may activate the HIF-1α/BNIP3 signaling pathway to promote the occurrence of mitochondrial autophagy, clear damaged mitochondria, provide energy for healthy cells, reduce neuronal cell death, and restore the brain function, thereby reducing ischemic damage to the hippocampal tissue, improving learning and memory abilities, and exerting therapeutic effects on VD in rats.
10.The current situation and countermeasures of construction of courses related to Chinese Medicine Culture in Chinese medicine colleges and universities
Chinese Journal of Medical Education Research 2024;23(9):1242-1247
A web-based survey was used to summarize and analyze the current situation of the construction of the courses related to Chinese Medicine Culture in nine Chinese medicine colleges and universities in China. There are some problems in the construction of the courses, such as low standardization and systematicity, complex curriculum, insufficient pertinence, and shortage of practical and cross-curricular courses. We suggest improving the standardization of course materials, emphasizing the scientific nature of course content, strengthening the rationality of curriculum, increasing the interestingness of courses, appropriately adding practical courses, and promoting the intersection of courses with multiple disciplines.

Result Analysis
Print
Save
E-mail