1.Plasma exchange and intravenous immunoglobulin prolonged the survival of a porcine kidney xenograft in a sensitized, brain-dead human recipient.
Shuaijun MA ; Ruochen QI ; Shichao HAN ; Zhengxuan LI ; Xiaoyan ZHANG ; Guohui WANG ; Kepu LIU ; Tong XU ; Yang ZHANG ; Donghui HAN ; Jingliang ZHANG ; Di WEI ; Xiaozheng FAN ; Dengke PAN ; Yanyan JIA ; Jing LI ; Zhe WANG ; Xuan ZHANG ; Zhaoxu YANG ; Kaishan TAO ; Xiaojian YANG ; Kefeng DOU ; Weijun QIN
Chinese Medical Journal 2025;138(18):2293-2307
BACKGROUND:
The primary limitation to kidney transplantation is organ shortage. Recent progress in gene editing and immunosuppressive regimens has made xenotransplantation with porcine organs a possibility. However, evidence in pig-to-human xenotransplantation remains scarce, and antibody-mediated rejection (AMR) is a major obstacle to clinical applications of xenotransplantation.
METHODS:
We conducted a kidney xenotransplantation in a brain-dead human recipient using a porcine kidney with five gene edits (5GE) on March 25, 2024 at Xijing Hospital, China. Clinical-grade immunosuppressive regimens were employed, and the observation period lasted 22 days. We collected and analyzed the xenograft function, ultrasound findings, sequential protocol biopsies, and immune surveillance of the recipient during the observation.
RESULTS:
The combination of 5GE in the porcine kidney and clinical-grade immunosuppressive regimens prevented hyperacute rejection. The xenograft kidney underwent delayed graft function in the first week, but urine output increased later and the single xenograft kidney maintained electrolyte and pH homeostasis from postoperative day (POD) 12 to 19. We observed AMR at 24 h post-transplantation, due to the presence of pre-existing anti-porcine antibodies and cytotoxicity before transplantation; this AMR persisted throughout the observation period. Plasma exchange and intravenous immunoglobulin treatment mitigated the AMR. We observed activation of latent porcine cytomegalovirus toward the end of the study, which might have contributed to coagulation disorder in the recipient.
CONCLUSIONS
5GE and clinical-grade immunosuppressive regimens were sufficient to prevent hyperacute rejection during pig-to-human kidney xenotransplantation. Pre-existing anti-porcine antibodies predisposed the xenograft to AMR. Plasma exchange and intravenous immunoglobulin were safe and effective in the treatment of AMR after kidney xenotransplantation.
Transplantation, Heterologous/methods*
;
Kidney Transplantation/methods*
;
Heterografts/pathology*
;
Immunoglobulins, Intravenous/administration & dosage*
;
Graft Survival/immunology*
;
Humans
;
Animals
;
Sus scrofa
;
Graft Rejection/prevention & control*
;
Kidney/pathology*
;
Gene Editing
;
Species Specificity
;
Immunosuppression Therapy/methods*
;
Plasma Exchange
;
Brain Death
;
Biopsy
;
Male
;
Aged
2.Preliminary study on preparation of decellularized nerve grafts from GGTA1 gene-edited pigs and their immune rejection in xenotransplantation.
Yuli LIU ; Jinjuan ZHAO ; Xiangyu SONG ; Zhibo JIA ; Chaochao LI ; Tieyuan ZHANG ; Xiangling LI ; Shi YAN ; Ruichao HE ; Jiang PENG
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(2):224-229
OBJECTIVE:
To prepare decellularized nerve grafts from alpha-1, 3-galactosyltransferase (GGTA1) gene-edited pigs and explore their biocompatibility for xenotransplantation.
METHODS:
The sciatic nerves from wild-type pigs and GGTA1 gene-edited pigs were obtained and underwent decellularization. The alpha-galactosidase (α-gal) content in the sciatic nerves of GGTA1 gene-edited pigs was detected by using IB4 fluorescence staining and ELISA method to verify the knockout status of the GGTA1 gene, and using human sciatic nerve as a control. HE staining and scanning electron microscopy observation were used to observe the structure of the nerve samples. Immunofluorescence staining and DNA content determination were used to evaluate the degree of decellularization of the nerve samples. Fourteen nude mice were taken, and subcutaneous capsules were prepared on both sides of the spine. Decellularized nerve samples of wild-type pigs ( n=7) and GGTA1 gene-edited pigs ( n=7) were randomly implanted in the subcutaneous capsules. Blood was drawn at 1, 3, 5, and 7 days after implantation to detect neutrophil counting.
RESULTS:
IB4 fluorescence staining and ELISA detection showed that GGTA1 gene was successfully knocked out in the nerves of GGTA1 gene-edited pigs. HE staining showed that the structure of the decellularized nerve from GGTA1 gene-edited pigs was well preserved; the nerve basement membrane tube structure was visible under scanning electron microscopy; no cell nuclei was observed, and the extracellular matrix components was retained in the nerve grafts by immunofluorescence staining; and the DNA content was significantly reduced when compared with the normal nerves ( P<0.05). In vivo experiments showed that the number of neutrophils in the two groups were similar at 1, 3, and 7 days after implantation, with no significant difference ( P>0.05); only at 5 days, the number of neutrophils was significantly lower in the GGTA1 gene-edited pigs than in the wild-type pigs ( P<0.05).
CONCLUSION
The decellularized nerve grafts from GGTA1 gene-edited pigs have well-preserved nerve structure, complete decellularization, retain the natural nerve basement membrane tube structure and components, and low immune response after xenotransplantation through in vitro experiments.
Animals
;
Transplantation, Heterologous
;
Galactosyltransferases/genetics*
;
Sciatic Nerve/immunology*
;
Swine
;
Tissue Engineering/methods*
;
Humans
;
Graft Rejection/prevention & control*
;
Gene Editing
;
Mice
;
Mice, Nude
;
Heterografts/immunology*
;
Animals, Genetically Modified
;
Tissue Scaffolds
;
Decellularized Extracellular Matrix
3.Poster Fusion Cage combined with xenogeneic bone graft augmentation for bone defect management in distal radius fractures.
Yi GAO ; Xiaomeng REN ; Chuyang ZENG ; Longbo DU ; Meng LI ; Rui MA ; Wei ZHANG
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(6):655-661
OBJECTIVE:
To evaluate the effectiveness of Poster Fusion Cage combined with xenogeneic bone graft augmentation for bone defect management in distal radius fractures.
METHODS:
A retrospective analysis was conducted on 20 patients with bone defects complicating distal radius fractures who met the selection criteria and were treated between June 2022 and June 2024. The cohort comprised 2 males and 18 females, aged 54-87 years (mean, 63.3 years). Etiologies included falls in 17 cases, traffic accidents in 2 cases, and crush injury in 1 case. According to AO classification, there were 5 cases of type A, 8 cases of type B, and 7 cases of type C. The interval from injury to operation ranged from 2 to 10 days (mean, 5.8 days). All patients underwent volar plate fixation augmented with Poster Fusion Cage and demineralized xenogeneic bone matrix grafting. The operation time, intraoperative blood loss, fracture healing time, and postoperative complications were recorded. Radiographic parameters, including radial height, volar tilt, and ulnar deviation, were measured on standardized X-ray films obtained immediately postoperatively and at last follow-up, and whether secondary reduction loss occurred was judged. At last follow-up, wrist range of motion (extension, flexion, radial deviation, ulnar deviation, pronation, and supination) and grip strength (expressed as a percentage of the contralateral side) were measured. Wrist function was assessed using the Disabilities of the Arm, Shoulder, and Hand (DASH) score and Patient-Rated Wrist Evaluation (PRWE) score.
RESULTS:
The operation time was 70-200 minutes (mean, 116.4 minutes), and the intraoperative blood loss was 10-80 mL (mean, 36.5 mL). All surgical incisions healed by first intention, with no neurovascular complications documented. All patients were followed up 9-12 months (mean, 11.6 months). All fractures healed normally, with a healing time of 8-14 weeks (mean, 9.95 weeks). No significant difference was observed in radial height, volar tilt, or ulnar deviation between immediate postoperatively and last follow-up ( P>0.05). All fractures achieved satisfactory reduction, with no secondary loss of reduction or implant failure occurring during follow-up. At last follow-up, the range of motion of the affected wrist joint was 60°-65° (mean, 62.5°) in extension, 67°-75° (mean, 71.1°) in flexion, 18°-23° (mean, 20.4°) in radial deviation, 28°-33° (mean, 30.1°) in ulnar deviation, 69°-80° (mean, 74.7°) in pronation, and 69°-82° (mean, 75.6°) in supination. Grip strength recovered to 75%-85% (mean, 80%) of the contralateral side. Functional scores showed a DASH score of 5-15 (mean, 9.4) and PRWE score of 8.0-12.5 (mean, 10.2).
CONCLUSION
The combination of Poster Fusion Cage and xenogeneic bone graft augmentation provides a safe and effective treatment for bone defects in distal radius fractures.
Retrospective Studies
;
Humans
;
Male
;
Female
;
Middle Aged
;
Aged
;
Aged, 80 and over
;
Treatment Outcome
;
Wrist Fractures/surgery*
;
Heterografts
;
Transplantation, Heterologous/methods*
;
Bone Transplantation/methods*
;
Operative Time
;
Blood Loss, Surgical
;
Radius/surgery*
;
Fracture Healing
;
Time Factors
;
Postoperative Complications/etiology*
;
Range of Motion, Articular
;
Follow-Up Studies
;
Internal Fixators
;
Fracture Fixation, Internal/methods*
;
Combined Modality Therapy
4.Establishment of Patient-Derived Xenograft (PDX) Zebrafish Model of Multiple Myeloma and Its Application in Drug Screening.
Zhen YU ; Ying LI ; Ke-Fei WANG ; Lu WANG ; Mu HAO
Journal of Experimental Hematology 2023;31(6):1745-1749
OBJECTIVE:
To establish a MM patient-derived tumor xenograft model (MM-PDX) in zebrafish, and to evaluate the anti-myeloma activity of indirubin-3'-monoxime(I3MO) using this model.
METHODS:
Zebrafish embryos 2 days after fertilization were transplanted with fluorescence labeled myeloma primary tumor cells, the survival of primary tumor cells in zebrafish was observed at 0,16 and 24 hours after cell injection. The zebrafish embryos after tumor cell transplantation were randomly divided into control group, BTZ treatment and I3MO treatment group. Before and 24 hours after treatment with BTZ and I3MO, the positive area with calcein or Dil in zebrafish were observed under fluorescence microscope to reflect the survival of tumor cells, and it was verified.
RESULTS:
MM patient derived tumor cells survived in zebrafish. The construction of MM-PDX was successful. Compared with control group, the fluo- rescence area of the BTZ and I3MO treatment groups in zebrafish were significantly decreased(P<0.05), and BTZ and I3MO significantly inhibited the survival of MM cells in zebrafish.
CONCLUSION
MM-PDX model was successfully established. Zebrafish model derived from tumor cells of MM patients can be used as a tool for drug screening of MM.
Animals
;
Humans
;
Bortezomib/therapeutic use*
;
Cell Line, Tumor
;
Disease Models, Animal
;
Drug Evaluation, Preclinical
;
Heterografts
;
Multiple Myeloma/pathology*
;
Xenograft Model Antitumor Assays
;
Zebrafish
5.A biomimetic nanoplatform for customized photothermal therapy of HNSCC evaluated on patient-derived xenograft models.
Qi WU ; Lan CHEN ; Xiaojuan HUANG ; Jiayi LIN ; Jiamin GAO ; Guizhu YANG ; Yaping WU ; Chong WANG ; Xindan KANG ; Yanli YAO ; Yujue WANG ; Mengzhu XUE ; Xin LUAN ; Xin CHEN ; Zhiyuan ZHANG ; Shuyang SUN
International Journal of Oral Science 2023;15(1):9-9
Cancer cell membrane (CCM) derived nanotechnology functionalizes nanoparticles (NPs) to recognize homologous cells, exhibiting translational potential in accurate tumor therapy. However, these nanoplatforms are majorly generated from fixed cell lines and are typically evaluated in cell line-derived subcutaneous-xenografts (CDX), ignoring the tumor heterogeneity and differentiation from inter- and intra- individuals and microenvironments between heterotopic- and orthotopic-tumors, limiting the therapeutic efficiency of such nanoplatforms. Herein, various biomimetic nanoplatforms (CCM-modified gold@Carbon, i.e., Au@C-CCM) were fabricated by coating CCMs of head and neck squamous cell carcinoma (HNSCC) cell lines and patient-derived cells on the surface of Au@C NP. The generated Au@C-CCMs were evaluated on corresponding CDX, tongue orthotopic xenograft (TOX), immune-competent primary and distant tumor models, and patient-derived xenograft (PDX) models. The Au@C-CCM generates a photothermal conversion efficiency up to 44.2% for primary HNSCC therapy and induced immunotherapy to inhibit metastasis via photothermal therapy-induced immunogenic cell death. The homologous CCM endowed the nanoplatforms with optimal targeting properties for the highest therapeutic efficiency, far above those with mismatched CCMs, resulting in distinct tumor ablation and tumor growth inhibition in all four models. This work reinforces the feasibility of biomimetic NPs combining modular designed CMs and functional cores for customized treatment of HNSCC, can be further extended to other malignant tumors therapy.
Animals
;
Humans
;
Squamous Cell Carcinoma of Head and Neck/therapy*
;
Heterografts
;
Photothermal Therapy
;
Biomimetics
;
Disease Models, Animal
;
Head and Neck Neoplasms/therapy*
;
Cell Line, Tumor
;
Tumor Microenvironment
6.PPAR-γ activation promotes xenogenic bioroot regeneration by attenuating the xenograft induced-oxidative stress.
Tingting LAN ; Fei BI ; Yuchan XU ; Xiaoli YIN ; Jie CHEN ; Xue HAN ; Weihua GUO
International Journal of Oral Science 2023;15(1):10-10
Xenogenic organ transplantation has been considered the most promising strategy in providing possible substitutes with the physiological function of the failing organs as well as solving the problem of insufficient donor sources. However, the xenograft, suffered from immune rejection and ischemia-reperfusion injury (IRI), causes massive reactive oxygen species (ROS) expression and the subsequent cell apoptosis, leading to the xenograft failure. Our previous study found a positive role of PPAR-γ in anti-inflammation through its immunomodulation effects, which inspires us to apply PPAR-γ agonist rosiglitazone (RSG) to address survival issue of xenograft with the potential to eliminate the excessive ROS. In this study, xenogenic bioroot was constructed by wrapping the dental follicle cells (DFC) with porcine extracellular matrix (pECM). The hydrogen peroxide (H2O2)-induced DFC was pretreated with RSG to observe its protection on the damaged biological function. Immunoflourescence staining and transmission electron microscope were used to detect the intracellular ROS level. SD rat orthotopic transplantation model and superoxide dismutase 1 (SOD1) knockout mice subcutaneous transplantation model were applied to explore the regenerative outcome of the xenograft. It showed that RSG pretreatment significantly reduced the adverse effects of H2O2 on DFC with decreased intracellular ROS expression and alleviated mitochondrial damage. In vivo results confirmed RSG administration substantially enhanced the host's antioxidant capacity with reduced osteoclasts formation and increased periodontal ligament-like tissue regeneration efficiency, maximumly maintaining the xenograft function. We considered that RSG preconditioning could preserve the biological properties of the transplanted stem cells under oxidative stress (OS) microenvironment and promote organ regeneration by attenuating the inflammatory reaction and OS injury.
Mice
;
Humans
;
Rats
;
Animals
;
Swine
;
PPAR gamma/pharmacology*
;
Reactive Oxygen Species/pharmacology*
;
Heterografts
;
Hydrogen Peroxide/pharmacology*
;
Rats, Sprague-Dawley
;
Rosiglitazone/pharmacology*
;
Oxidative Stress
7.Establishment of a Patient-Derived T-Cell Acute Lymphoblastic Leukemia Xenograft Model in Novel Immunodeficient NCG Mice.
Peng-Jun JIANG ; Xing-Bin DAI ; Xiang-Tu KONG ; Zu-Qiong XU ; Hui YU ; Jie PANG ; Wen XIA ; Ju-Hua YU ; Guang-Rong ZHU ; Fang TIAN ; Xue-Jun ZHU
Journal of Experimental Hematology 2023;31(2):311-318
OBJECTIVE:
The leukemia cells from patients with T-cell acute lymphoblastic leukemia (T-ALL) were inoculated into NCG mice to establish a stable human T-ALL leukemia animal model.
METHODS:
Leukemia cells from bone marrow of newly diagnosed T-ALL patients were isolated, and the leukemia cells were inoculated into NCG mice via tail vein. The proportion of hCD45 positive cells in peripheral blood of the mice was detected regularly by flow cytometry, and the infiltration of leukemia cells in bone marrow, liver, spleen and other organs of the mice was detected by pathology and immunohistochemistry. After the first generation mice model was successfully established, the spleen cells from the first generation mice were inoculated into the second generation mice, and after the second generation mice model was successfully established, the spleen cells from the second generation mice were further inoculated into the third generation mice, and the growth of leukemia cells in peripheral blood of the mice in each group was monitored by regular flow cytometry to evaluate the stability of this T-ALL leukemia animal model.
RESULTS:
On the 10th day after inoculation, hCD45+ leukemia cells could be successfully detected in the peripheral blood of the first generation mice, and the proportion of these cells was gradually increased. On average, the mice appeared listless 6 or 7 weeks after inoculation, and a large number of T lymphocyte leukemia cells were found in the peripheral blood and bone marrow smear of the mice. The spleen of the mice was obviously enlarged, and immunohistochemical examination showed that hCD3+ leukemia cells infiltrated into bone marrow, liver and spleen extensively. The second and third generation mice could stably develop leukemia, and the average survival time was 4-5 weeks.
CONCLUSION
Inoculating leukemia cells from bone marrow of patients with T-ALL into NCG mice via tail vein can successfully construct a patient-derived tumor xenografts (PDTX) model.
Humans
;
Animals
;
Mice
;
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma
;
Heterografts
;
Bone Marrow
;
Disease Models, Animal
;
T-Lymphocytes
;
Mice, SCID
8.Cordycepin, a metabolite of Cordyceps militaris, inhibits xenograft tumor growth of tongue squamous cell carcinoma in nude mice.
Qingwei ZHENG ; Yidan SHAO ; Wanting ZHENG ; Yingxu ZOU
Journal of Southern Medical University 2023;43(6):873-878
OBJECTIVE:
To evaluate the inhibitory effect of cordycepin on oral cancer xenograft in nude mice and explore the underlying mechanisms.
METHODS:
Sixteen BALB/c mice bearing subcutaneous human tongue squamous cell carcinoma (TSCC) TCA-8113 cell xenografts were randomized into model group and cordycepin treatment group for daily treatment with saline and cordycepin for 4 weeks. After the treatment, the tumor xenografts were dissected and weighed to assess the tumor inhibition rate. Histological changes in the heart, spleen, liver, kidney, and lung of the mice were evaluated with HE staining, and tumor cell apoptosis was examined using TUNEL staining; The expressions of Bax, Bcl-2, GRP78, CHOP, and caspase-12 in the xenografts were detected using RT-qPCR and Western blotting.
RESULTS:
Cordycepin treatment resulted in a tumor inhibition rate of 56.09% in the nude mouse models, induced obvious changes in tumor cell morphology and significantly enhanced apoptotic death of the tumor cells without causing pathological changes in the vital organs. Cordycepin treatment also significantly reduced Bcl-2 expression (P < 0.05) and increased Bax, GRP78, CHOP, and caspase-12 expressions at both the RNA and protein levels in the tumor tissues.
CONCLUSION
Cordycepin treatment can induce apoptotic death of TCA-8113 cell xenografts in nude mice via the endogenous mitochondrial pathway and endoplasmic reticulum stress pathways.
Humans
;
Animals
;
Mice
;
Carcinoma, Squamous Cell/drug therapy*
;
Heterografts
;
Mice, Nude
;
Tongue Neoplasms/drug therapy*
;
Cordyceps
;
Caspase 12
;
Endoplasmic Reticulum Chaperone BiP
;
bcl-2-Associated X Protein
;
Tongue
9.Effect of Astragali Radix-Curcumae Rhizoma compatibility combined with 5-fluorouracil on Th17/Treg balance and tumor-related mRNA and protein expression in orthotopic xenograft model mice of CT26.WT colorectal carcinoma.
Wen-Hui GUO ; Zhuo-Cao QI ; Han-Qing GUAN ; Tian-Tian LIU ; Li LIANG ; Qian-Hui YU ; Yan LIANG ; De-Cai TANG
China Journal of Chinese Materia Medica 2022;47(1):167-175
Astragali Radix-Curcumae Rhizoma(AR-CR) is a combination commonly used in the clinical treatment of tumors. Based on the T helper 17(Th17)/regulatory T cell(Treg) balance, the present study explored the possible mechanism of AR-CR combined with 5-fluorouracil(5-FU) on the tumor growth of orthotopic xenograft model mice of colorectal carcinoma. Ninety male BALB/c mice were randomly divided into nine groups, i.e., a blank group, a model group, a 5-FU group, high-, medium-, and low-dose AR-CR(2∶1) groups, and high-, medium-, and low-dose AR-CR+5-FU groups, with 10 mice in each group. The orthotopic xenograft model of CT26.WT colorectal carcinoma was induced in mice except those in the blank group. Twenty-four hours after the ope-ration, mice in the blank group and the model group received normal saline by gavage(10 mL·kg~(-1), once per day), and those in the 5-FU group received 5-FU by intraperitoneal injection(25 mg·kg~(-1), once every other day). Mice in the AR-CR groups received AR and CR decoctions by gavage(12, 6, and 3 g·kg~(-1), once a day) and those in the combination groups received AR and CR decoctions and 5-FU(doses and administration methods were the same as above). After intervention for three weeks, all mice were sacrificed and tumor tissues were collected. The tumor mass was weighed and the average tumor weight was calculated. The changing trend of Th17/Treg(%) in the CD4~+T lymphocytes of the spleen tissues of the mice in each group was detected. The mRNA expression in the blood and protein expression in the tumor tissues of transforming growth factor-β(TGF-β), tumor necrosis factor-α(TNF-α), interferon-γ(IFN-γ), Smad4, N-cadherin, matrix metalloproteinase-7(MMP-7) were detected. The experimental results revealed that compared with the model group, the groups with drug intervention showed reduced tumor mass(P<0.01), decreased CD4~+IL-17~+ in the spleen tissues to varying degrees(P<0.001), and increased proportion of CD4~+Foxp3~+(P<0.001 or P<0.05), indicating that Th17/Treg maintained dynamic balance, and the effect of the combination groups was predominant. Additionally, the mRNA expression in the blood and protein expression in the tumor tissues of TGF-β, TNF-α, IFN-γ, Smad4, N-cadherin, and MMP-7 declined to varying degrees in a dose-dependent manner(P<0.01 or P<0.001). The AR-CR combined with 5-FU can inhibit the tumor growth of orthotopic xenograft model mice of CT26.WT colorectal carcinoma. The mechanism may be related to maintenance of Th17/Treg dynamic balance in the body and down-regulation of TGF-β, TNF-α, IFN-γ, Smad4, N-cadherin, and MMP-7 expression.
Animals
;
Colorectal Neoplasms/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Fluorouracil/pharmacology*
;
Heterografts
;
Humans
;
Male
;
Mice
;
Mice, Inbred BALB C
;
RNA, Messenger/metabolism*
;
T-Lymphocytes, Regulatory
;
Th17 Cells
10.An injectable hydrogel/staple fiber composite for sustained release of CA4P and doxorubicin for combined chemotherapy of xenografted breast tumor in mice.
Ting WANG ; Ling YANG ; Yuhan XIE ; Siyu CHENG ; Min XIONG ; Xiaoming LUO
Journal of Southern Medical University 2022;42(5):625-632
OBJECTIVE:
To prepare an injectable hydrogel/staple fiber composite loaded with combretastain A-4 disodium phosphate (CA4P) and doxorubicin (DOX) and evaluate its antitumor efficacy via intratumoral injection.
METHODS:
DOX-loaded PELA staple fibers (FDOX) were prepared using electro-spinning and cryo-cutting, and the drug distribution on the surface of the fibers was observed using a fluorescence microscope, and the encapsulation efficiency and loading capacity of FDOX were determined with a fluorospectro photometer. The fibers were then dispersed in CA4P-loaded PLGA-PEG-PLGA tri-block polymer solution at room temperature to obtain the hydrogel/staple fiber composite (GCA4P/FDOX). The thermo-sensitivity of this composite was determined by a test tube inverting method. An ultraviolet spectrophotometer and a fluorospectrophotometer were used to detect the release profile of CA4P and DOX, respectively. We observed in vivo gel formation of the composite after subcutaneous injection in mice. The in vitro cytotoxicity of GCA4P/FDOX composite in MCF-7 and 4T1 cells was assessed using cell Counting Kit-8 (CCK-8) reagent. In a mouse model bearing breast tumor 4T1 cell xenograft, we evaluated the antitumor efficacy of the composite by monitoring tumor growth within 30 days after intratumoral injection of the composite. HE staining, immunohistochemistry for Ki67 and immunofluorescence (TUNEL) assay were used for pathological examination of the tumor tissues 21 days after the treatments.
RESULTS:
The average length of FDOX was 4.0±1.3 μm, and its drug loading capacity was (2.69±0.35)% with an encapsulation efficiency of (89.70±0.12)%. DOX was well distributed on the surface of the fibers. When the temperature increased to 37 ℃, the composite rapidly solidified to form a gel in vitro. Drug release behavior test showed that CA4P was completely released from the composite in 5 days and 87% of DOX was released in 30 days. After subcutaneous injection, the composite solidified rapidly without degradation at 24 h after injection. After incubation with GCA4P/FDOX for 72 h, only 30.6% of MCF-7 cells and 28.9% of 4T1 cells were viable. In the tumor-bearing mice, the tumor volume was 771.9±76.9 mm3 in GCA4P/FDOX treatment group at 30 days. Pathological examination revealed obvious necrosis of the tumor tissues and tumor cell apoptosis induced by intratumoral injection of G4A4P/FDOX.
CONCLUSION
As an efficient dual drug delivery system, this hydrogel/staple fiber composite provides a new strategy for local combined chemotherapy of solid tumors.
Animals
;
Breast Neoplasms/drug therapy*
;
Cell Line, Tumor
;
Delayed-Action Preparations/therapeutic use*
;
Doxorubicin/therapeutic use*
;
Female
;
Heterografts
;
Humans
;
Hydrogels/therapeutic use*
;
Mice
;
Mice, Inbred BALB C
;
Phosphates

Result Analysis
Print
Save
E-mail