1.Oxidative Stress-related Signaling Pathways and Antioxidant Therapy in Alzheimer’s Disease
Li TANG ; Yun-Long SHEN ; De-Jian PENG ; Tian-Lu RAN ; Zi-Heng PAN ; Xin-Yi ZENG ; Hui LIU
Progress in Biochemistry and Biophysics 2025;52(10):2486-2498
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline, functional impairment, and neuropsychiatric symptoms. It represents the most prevalent form of dementia among the elderly population. Accumulating evidence indicates that oxidative stress plays a pivotal role in the pathogenesis of AD. Notably, elevated levels of oxidative stress have been observed in the brains of AD patients, where excessive reactive oxygen species (ROS) can cause extensive damage to lipids, proteins, and DNA, ultimately compromising neuronal structure and function. Amyloid β‑protein (Aβ) has been shown to induce mitochondrial dysfunction and calcium overload, thereby promoting the generation of ROS. This, in turn, exacerbates Aβ aggregation and enhances tau phosphorylation, leading to the formation of two pathological features of AD: extracellular Aβ plaque deposition and intracellular neurofibrillary tangles (NFTs). These events ultimately culminate in neuronal death, forming a vicious cycle. The interplay between oxidative stress and these pathological processes constitutes a core link in the pathogenesis of AD. The signaling pathways mediating oxidative stress in AD include Nrf2, RCAN1, PP2A, CREB, Notch1, NF‑κB, ApoE, and ferroptosis. Nrf2 signaling pathway serves as a key regulator of cellular redox homeostasis, exerts important antioxidant capacity and protective effects in AD. RCAN1 signaling pathway, as a calcineurin inhibitor, and modulates AD progression through multiple mechanisms. PP2A signaling pathway is involved in regulating tau phosphorylation and neuroinflammation processes. CREB signaling pathway contributes to neuroplasticity and memory formation; activation of CREB improves cognitive function and reduce oxidative stress. Notch1 signaling pathway regulates neuronal development and memory, participates in modulation of Aβ production, and interacts with Nrf2 toco-regulate antioxidant activity. NF‑κB signaling pathway governs immune and inflammatory responses; sustained activation of this pathway forms “inflammatory memory”, thereby exacerbating AD pathology. ApoE signaling pathway is associated with lipid metabolism; among its isoforms, ApoE-ε4 significantly increases the risk of AD, leading to elevated oxidative stress, abnormal lipid metabolism, and neuroinflammation. The ferroptosis signaling pathway is driven by iron-dependent lipid peroxidation, and the subsequent release of lipid peroxidation products and ROS exacerbate oxidative stress and neuronal damage. These interconnected pathways form a complex regulatory network that regulates the progression of AD through oxidative stress and related pathological cascades. In terms of therapeutic strategies targeting oxidative stress, among the drugs currently used in clinical practice for AD treatment, memantine and donepezil demonstrate significant therapeutic efficacy and can improve the level of oxidative stress in AD patients. Some compounds with antioxidant effects (such asα-lipoic acid and melatonin) have shown certain potential in AD treatment research and can be used as dietary supplements to ameliorate AD symptoms. In addition, non-drug interventions such as calorie restriction and exercise have been proven to exerted neuroprotective effects and have a positive effect on the treatment of AD. By comprehensively utilizing the therapeutic characteristics of different signaling pathways, it is expected that more comprehensive multi-target combination therapy regimens and combined nanomolecular delivery systems will be developed in the future to bypass the blood-brain barrier, providing more effective therapeutic strategies for AD.
2.Mannitol inhibits the proliferation of neural stem cell by a p38 mitogen-activated protein kinase-dependent signaling pathway
Hai-Zhen DUAN ; Xin ZHOU ; Quan HU ; Meng-Long LIU ; Shu-Hong WANG ; Ji ZHANG ; Xu-Heng JIANG ; Tian-Xi ZHANG ; An-Yong YU
Chinese Journal of Traumatology 2024;27(1):42-52
Purpose::Mannitol is one of the first-line drugs for reducing cerebral edema through increasing the extracellular osmotic pressure. However, long-term administration of mannitol in the treatment of cerebral edema triggers damage to neurons and astrocytes. Given that neural stem cell (NSC) is a subpopulation of main regenerative cells in the central nervous system after injury, the effect of mannitol on NSC is still elusive. The present study aims to elucidate the role of mannitol in NSC proliferation.Methods::C57 mice were derived from the animal house of Zunyi Medical University. A total of 15 pregnant mice were employed for the purpose of isolating NSCs in this investigation. Initially, mouse primary NSCs were isolated from the embryonic cortex of mice and subsequently identified through immunofluorescence staining. In order to investigate the impact of mannitol on NSC proliferation, both cell counting kit-8 assays and neurospheres formation assays were conducted. The in vitro effects of mannitol were examined at various doses and time points. In order to elucidate the role of Aquaporin 4 (AQP4) in the suppressive effect of mannitol on NSC proliferation, various assays including reverse transcription polymerase chain reaction, western blotting, and immunocytochemistry were conducted on control and mannitol-treated groups. Additionally, the phosphorylated p38 (p-p38) was examined to explore the potential mechanism underlying the inhibitory effect of mannitol on NSC proliferation. Finally, to further confirm the involvement of the p38 mitogen-activated protein kinase-dependent (MAPK) signaling pathway in the observed inhibition of NSC proliferation by mannitol, SB203580 was employed. All data were analyzed using SPSS 20.0 software (SPSS, Inc., Chicago, IL). The statistical analysis among multiple comparisons was performed using one-way analysis of variance (ANOVA), followed by Turkey's post hoc test in case of the data following a normal distribution using a Shapiro-Wilk normality test. Comparisons between 2 groups were determined using Student's t-test, if the data exhibited a normal distribution using a Shapiro-Wilk normality test. Meanwhile, data were shown as median and interquartile range and analyzed using the Mann-Whitney U test, if the data failed the normality test. A p < 0.05 was considered as significant difference. Results::Primary NSC were isolated from the mice, and the characteristics were identified using immunostaining analysis. Thereafter, the results indicated that mannitol held the capability of inhibiting NSC proliferation in a dose-dependent and time-dependent manner using cell counting kit-8, neurospheres formation, and immunostaining of Nestin and Ki67 assays. During the process of mannitol suppressing NSC proliferation, the expression of AQP4 mRNA and protein was downregulated, while the gene expression of p-p38 was elevated by reverse transcription polymerase chain reaction, immunostaining, and western blotting assays. Subsequently, the administration of SB203580, one of the p38 MAPK signaling pathway inhibitors, partially abrogated this inhibitory effect resulting from mannitol, supporting the fact that the p38 MAPK signaling pathway participated in curbing NSC proliferation induced by mannitol.Conclusions::Mannitol inhibits NSC proliferation through downregulating AQP4, while upregulating the expression of p-p38 MAPK.
3.Licorice-saponin A3 is a broad-spectrum inhibitor for COVID-19 by targeting viral spike and anti-inflammation
Yang YI ; Wenzhe LI ; Kefang LIU ; Heng XUE ; Rong YU ; Meng ZHANG ; Yang-Oujie BAO ; Xinyuan LAI ; Jingjing FAN ; Yuxi HUANG ; Jing WANG ; Xiaomeng SHI ; Junhua LI ; Hongping WEI ; Kuanhui XIANG ; Linjie LI ; Rong ZHANG ; Xin ZHAO ; Xue QIAO ; Hang YANG ; Min YE
Journal of Pharmaceutical Analysis 2024;14(1):115-127
Currently,human health due to corona virus disease 2019(COVID-19)pandemic has been seriously threatened.The coronavirus severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)spike(S)protein plays a crucial role in virus transmission and several S-based therapeutic approaches have been approved for the treatment of COVID-19.However,the efficacy is compromised by the SARS-CoV-2 evolvement and mutation.Here we report the SARS-CoV-2 S protein receptor-binding domain(RBD)inhibitor licorice-saponin A3(A3)could widely inhibit RBD of SARS-CoV-2 variants,including Beta,Delta,and Omicron BA.1,XBB and BQ1.1.Furthermore,A3 could potently inhibit SARS-CoV-2 Omicron virus in Vero E6 cells,with EC50 of 1.016 pM.The mechanism was related to binding with Y453 of RBD deter-mined by hydrogen-deuterium exchange mass spectrometry(HDX-MS)analysis combined with quan-tum mechanics/molecular mechanics(QM/MM)simulations.Interestingly,phosphoproteomics analysis and multi fluorescent immunohistochemistry(mIHC)respectively indicated that A3 also inhibits host inflammation by directly modulating the JNK and p38 mitogen-activated protein kinase(MAPK)path-ways and rebalancing the corresponding immune dysregulation.This work supports A3 as a promising broad-spectrum small molecule drug candidate for COVID-19.
4.Hip joint biomechanical analysis of the acetabular anatomical reconstruction and nonanatomical reconstruction in to-tal hip arthroplasty for Crowe type Ⅲ developmental dysplasia of the hip by finite element method
Heng ZHANG ; Yu-Fan ZHOU ; Bo-Wen LI ; Kuan-Xin LI ; Yang LIU ; Jian-Sheng ZHOU ; Jian-Ning ZHAO
China Journal of Orthopaedics and Traumatology 2024;37(5):505-515
Objective To analyze the hip joint biomechanies of the acetabular anatomical reconstruction and nonanatomi-cal reconstruction in total hip arthroplasty(THA)for Crowe type Ⅲ developmental dysplasia of the hip(DDH)by finite ele-ment method,which provided theoretical foundation and experimental basis for the anatomical acetabular reconstruction dur-ing THA in clinical practice.Methods One patient with left end-stage hip arthritis secondary to Crowe type Ⅲ DDH was se-lected in this study,who underwent total hip arthroplasty in the orthopedic department of the First Affiliated Hospital of Bengbu Medical College in April 2020.This patient was female,57 years old.The preoperative and postoperative three dimentional CT scan of the patient's pelvis were performed.Fourteen acetabular cup models with different anteversion,inclination and rotation center height were established in Mimics and 3-Matic software.The boundary and load conditions were set in Abaqus software.The Von Mises and stress distribution of the hip joint were calculated and observed.Results In the Crowe type Ⅲ DDH THA,if the hip rotation center was restored anatomically and the acetabular cup's inclination was set as 40°,the cup's anteversion var-ied from 5° to 25°,the lowest Von Mises value of acetabular cup and polyethylene liner occured in 20°anteversioin;if the hip rotation center was restored anatomically and the acetabular cup's anteversion was set as 15°,the cup's inclination varied from 35° to 55°,the lowest Von Mises value of acetabular cup and polyethylene liner occured in 35° inclination;if the acetabular cup's anteversion and inclination were set as 15°and 40°respectively,the up migration of hip rotaion center varied from 0 mm to 20 mm,the lowest Von Mises value of acetabular cup and polyethylene liner occured in 10 mm up migration.In all fourteen models,the Von Mises value of the acetabulum,acetabulum cup and polyethylene liner were lowest when the acetabular cup's anteversion and inlcination were 15°,35° respectively,as well as the rotation center was restored anatomically.Conclusion In total hip arthroplasty for Crowe type Ⅲ DDH,the anatomical restoration of hip rotation center with 15° anteversion and 35° in-clination of the acetabular cup are suggested,bone graft above the acetabular cup and additional screws are recommended si-multaneously to further reduce the Von Mises of hip joint.
5.ABO*A2.08 Subtype Allele Identification and Protein Structure Analysis in Newborns
Xin LIU ; Lian-Hui WANG ; Jin SHU ; Zi-Heng XU ; Xiu-Yun XU
Journal of Experimental Hematology 2024;32(1):225-230
Objective:To study the serological characteristics of ABO*A2.08 subtype and explore its genetic molecular mechanism.Methods:ABO blood group identification was performed on proband and her family members by routine serological methods.ABO genotyping and sequence analysis were performed by polymerase chain reaction-sequence specific primer(PCR-SSP),and direct sequencing of PCR products from exons 6 and 7 of ABO gene were directly sequenced and analyzed.The effect of gene mutation in A2.08 subtype on structural stability of GTA protein was investigated by homologous protein conserved analysis,3D molecular modeling and protein stability prediction.Results:The proband's serological test results showed subtype Ax,and ABO genotyping confirmed that the proband's genotype was ABO*A207/08.Gene sequencing of the proband's father confirmed the characteristic variation of c.539G>C in the 7th exon of ABO gene,leading to the replacement of polypeptide chain p.Arg180Pro(R180P).3D protein molecular modeling and analysis suggested that the number of hydrogen bonds of local amino acids in the protein structure was changed after the mutation,and protein stability prediction showed that the mutation had a great influence on the protein structure stability.Conclusion:The mutation of the 7th exon c.539G>C of ABO gene leads to the substitution of polypeptide chain amino acid,which affects the structural stability of GTA protein and leads to the change of enzyme activity,resulting in the A2.08 phenotype.The mutated gene can be stably inherited.
6.Relationship and clinical significance of ctDNA methylation and postoperative recurrence of thyroid cancer
Xin-Yu LIU ; Heng-Guan CUI ; Ting ZHOU ; Xiao-Liang WANG ; Wei-Xing SHEN
Chinese Journal of Current Advances in General Surgery 2024;27(8):618-621
Objective:To investigate the relationship and clinical significance of circulating tu-mor DNA(ctDNA)methylation with postoperative recurrence of thyroid cancer.Method:5 pa-tients with recurrent thyroid cancer in our hospital from March 2021 to April 2022 were selected as the observation group,and 2 healthy volunteers were selected as the control group.The level of ctDNA methylation in peripheral blood of the two groups was detected by Illumina high-throughput sequencing system.Gene ontology(GO)function analysis and Kyoto gene and genome encyclope-dia(KEGG)signal pathway analysis were carried out on the methylation region genes with signifi-cant differences through the DAVID gene function analysis platform.Result:There were 7787 dif-ferential ctDNA methylation sites between the two groups.2914(37.4%)were hypermethylation sites and 4873(62.6%)were low methylation sites.GO functional analysis showed that differentially methylated genes were enriched in molecular functions such as DNA-binding transcriptional acti-vation,cell-substrate adhesion,glycoprotein complex and other cellular components.KEGG path-way analysis showed that differentially methylated genes were enriched in thyroid carcinoma signal pathway,cell adhesion molecules,RAP1 signal pathway,RAS signal pathway,MAPK signal path-way and so on.Conclusion:ctDNA methylation may be involved in cancer recurrence in postop-erative patients with thyroid cancer.Monitoring the level of ctDNA methylation in peripheral blood may be an effective method to indicate the recurrence or metastasis of thyroid cancer and guide clinical diagnosis and treatment.
7.Dronedarone Attenuates Ang II-Induced Myocardial Hypertrophy Through Regulating SIRT1/FOXO3/PKIA Axis
Cheng CHEN ; Song HU ; Heng-Jing HU ; Zhi-Xuan LIU ; Xin-Teng WU ; Tao ZOU ; Hua SU
Korean Circulation Journal 2024;54(4):172-186
Background and Objectives:
Long-term pathological myocardial hypertrophy (MH) seriously affects the normal function of the heart. Dronedarone was reported to attenuate left ventricular hypertrophy of mice. However, the molecular regulatory mechanism of dronedarone in MH is unclear.
Methods:
Angiotensin II (Ang II) was used to induce cell hypertrophy of H9C2 cells.Transverse aortic constriction (TAC) surgery was performed to establish a rat model of MH.Cell size was evaluated using crystal violet staining and rhodamine phalloidin staining.Reverse transcription quantitative polymerase chain reaction and western blot were performed to detect the mRNA and protein expressions of genes. JASPAR and luciferase activity were conducted to predict and validate interaction between forkhead box O3 (FOXO3) and protein kinase inhibitor alpha (PKIA) promoter.
Results:
Ang II treatment induced cell hypertrophy and inhibited sirtuin 1 (SIRT1) expression, which were reversed by dronedarone. SIRT1 overexpression or PKIA overexpression enhanced dronedarone-mediated suppression of cell hypertrophy in Ang II-induced H9C2 cells. Mechanistically, SIRT1 elevated FOXO3 expression through SIRT1-mediated deacetylation of FOXO3 and FOXO3 upregulated PKIA expression through interacting with PKIA promoter. Moreover, SIRT1 silencing compromised dronedaronemediated suppression of cell hypertrophy, while PKIA upregulation abolished the influences of SIRT1 silencing. More importantly, dronedarone improved TAC surgery-induced MH and impairment of cardiac function of rats via affecting SIRT1/FOXO3/PKIA axis.
Conclusions
Dronedarone alleviated MH through mediating SIRT1/FOXO3/PKIA axis, which provide more evidences for dronedarone against MH.
8.Diagnosis and treatment of pediatric septic shock in pediatric intensive care units from hospitals of different levels.
Zhi Hua WANG ; Gang LIU ; Chao Nan FAN ; Xiang Die WANG ; Xin Hui LIU ; Jun SU ; Heng Miao GAO ; Su Yun QIAN ; Zheng LI ; Yi Bing CHENG
Chinese Journal of Pediatrics 2023;61(3):209-215
Objective: To investigate the differences in clinical characteristics, diagnosis, and treatment of pediatric septic shock in pediatric intensive care unit (PICU) among hospitals of different levels. Methods: This retrospective study enrolled 368 children with septic shock treated in the PICU of Beijing Children's Hospital, Henan Children's Hospital, and Baoding Children's Hospital from January 2018 to December 2021. Their clinical data were collected, including the general information, location of onset (community or hospital-acquired), severity, pathogen positivity, consistence of guideline (the rate of standard attainment at 6 h after resuscitation and the rate of anti-infective drug administration within 1 h after diagnosis), treatment, and in-hospital mortality. The 3 hospitals were national, provincial, and municipal, respectively. Furthermore, the patients were divided into the tumor group and the non-tumor group, and into the in-hospital referral group and the outpatient or emergency admission group. Chi-square test and Mann-Whitney U test were used to analyze the data. Results: The 368 patients aged 32 (11, 98) months, of whom 223 were males and 145 females. There were 215, 107, and 46 patients with septic shock, with males of 141, 51, and 31 cases, from the national, provincial, and municipal hospitals, respectively. The difference in pediatric risk of mortality Ⅲ (PRISM Ⅲ) scores among the national,provincial and municipal group was statistically significant (26(19, 32) vs.19(12, 26) vs. 12(6, 19), Z=60.25,P<0.001). The difference in community acquired septic shock among the national,provincial and municipal group was statistically significant (31.6%(68/215) vs. 84.1%(90/107) vs. 91.3%(42/46), χ2=108.26,P<0.001). There were no significant differences in compliance with guidelines among the 3 groups (P>0.05). The main bacteria detected in the national group were Klebsiella pneumoniae (15.4% (12/78)) and Staphylococcus aureus (15.4% (12/78)); in the provincial group were Staphylococcus aureus (19.0% (12/63)) and Pseudomonas aeruginosa (12.7% (8/63)), and in the municipal group were Streptococcus pneumoniae (40.0% (10/25)) and Enteric bacilli (16.0% (4/25)). The difference in the proportion of virus and the proportion of 3 or more initial antimicrobials used among the national,provincial and municipal group was statistically significant (27.7% (43/155) vs. 14.9% (13/87) vs. 9.1% (3/33), 22.8%(49/215) vs. 11.2%(12/107) vs. 6.5%(3/46), χ2=8.82, 10.99, both P<0.05). There was no difference in the in-hospital mortality among the 3 groups (P>0.05). Regarding the subgroups of tumor and non-tumor, the national group had higher PRISM Ⅲ (31(24, 38) vs. 22 (21, 28) vs.16 (9, 22), 24 (18, 30) vs. 17(8, 24) vs. 10 (5, 16), Z=30.34, 10.45, both P<0.001), and it was the same for the subgroups of in-hospital referral and out-patient or emergency admission (29 (21, 39) vs. 23 (17, 30) vs. 15 (10, 29), 23 (17, 29) vs. 18 (10, 24) vs. 11 (5, 16), Z=20.33, 14.25, both P<0.001) as compared to the provincial and municipal group. There was no significant difference in the in-hospital mortality among the 2 pairs of subgroups (all P>0.05). Conclusion: There are differences in the severity, location of onset, pathogen composition, and initial antibiotics of pediatric septic shock in children's hospitals of different levels, but no differences in compliance with guidelines and in-hospital survival rate.
Female
;
Male
;
Humans
;
Child
;
Retrospective Studies
;
Shock, Septic/therapy*
;
Hospitalization
;
Intensive Care Units, Pediatric
;
Hospitals, Pediatric
9.The Nucleus Accumbens CRH-CRHR1 System Mediates Early-Life Stress-Induced Sleep Disturbance and Dendritic Atrophy in the Adult Mouse.
Ting WANG ; Yu-Nu MA ; Chen-Chen ZHANG ; Xiao LIU ; Ya-Xin SUN ; Hong-Li WANG ; Han WANG ; Yu-Heng ZHONG ; Yun-Ai SU ; Ji-Tao LI ; Tian-Mei SI
Neuroscience Bulletin 2023;39(1):41-56
Adverse experiences in early life have long-lasting negative impacts on behavior and the brain in adulthood, one of which is sleep disturbance. As the corticotropin-releasing hormone (CRH)-corticotropin-releasing hormone receptor 1 (CRHR1) system and nucleus accumbens (NAc) play important roles in both stress responses and sleep-wake regulation, in this study we investigated whether the NAc CRH-CRHR1 system mediates early-life stress-induced abnormalities in sleep-wake behavior in adult mice. Using the limited nesting and bedding material paradigm from postnatal days 2 to 9, we found that early-life stress disrupted sleep-wake behaviors during adulthood, including increased wakefulness and decreased non-rapid eye movement (NREM) sleep time during the dark period and increased rapid eye movement (REM) sleep time during the light period. The stress-induced sleep disturbances were accompanied by dendritic atrophy in the NAc and both were largely reversed by daily systemic administration of the CRHR1 antagonist antalarmin during stress exposure. Importantly, Crh overexpression in the NAc reproduced the effects of early-life stress on sleep-wake behavior and NAc morphology, whereas NAc Crhr1 knockdown reversed these effects (including increased wakefulness and reduced NREM sleep in the dark period and NAc dendritic atrophy). Together, our findings demonstrate the negative influence of early-life stress on sleep architecture and the structural plasticity of the NAc, and highlight the critical role of the NAc CRH-CRHR1 system in modulating these negative outcomes evoked by early-life stress.
Animals
;
Mice
;
Corticotropin-Releasing Hormone/metabolism*
;
Nucleus Accumbens/metabolism*
;
Receptors, Corticotropin-Releasing Hormone/metabolism*
;
Sleep
;
Sleep Wake Disorders
;
Stress, Psychological/complications*
10.Inhibition of glutaminolysis alleviates myocardial fibrosis induced by angiotensin II.
Pan-Pan WANG ; Hao-Miao BAI ; Si-Yu HE ; Zi-Qi XIA ; Mei-Jie LIU ; Jiong AN ; Jia-Heng ZHOU ; Chen-Han LI ; Wei ZHANG ; Xing ZHANG ; Xin-Pei WANG ; Jia LI
Acta Physiologica Sinica 2023;75(2):179-187
The present study was aimed to investigate the role and mechanism of glutaminolysis of cardiac fibroblasts (CFs) in hypertension-induced myocardial fibrosis. C57BL/6J mice were administered with a chronic infusion of angiotensin II (Ang II, 1.6 mg/kg per d) with a micro-osmotic pump to induce myocardial fibrosis. Masson staining was used to evaluate myocardial fibrosis. The mice were intraperitoneally injected with BPTES (12.5 mg/kg), a glutaminase 1 (GLS1)-specific inhibitor, to inhibit glutaminolysis simultaneously. Immunohistochemistry and Western blot were used to detect protein expression levels of GLS1, Collagen I and Collagen III in cardiac tissue. Neonatal Sprague-Dawley (SD) rat CFs were treated with 4 mmol/L glutamine (Gln) or BPTES (5 μmol/L) with or without Ang II (0.4 μmol/L) stimulation. The CFs were also treated with 2 mmol/L α-ketoglutarate (α-KG) under the stimulation of Ang II and BPTES. Wound healing test and CCK-8 were used to detect CFs migration and proliferation respectively. RT-qPCR and Western blot were used to detect mRNA and protein expression levels of GLS1, Collagen I and Collagen III. The results showed that blood pressure, heart weight and myocardial fibrosis were increased in Ang II-treated mice, and GLS1 expression in cardiac tissue was also significantly up-regulated. Gln significantly promoted the proliferation, migration, mRNA and protein expression of GLS1, Collagen I and Collagen III in the CFs with or without Ang II stimulation, whereas BPTES significantly decreased the above indices in the CFs. α-KG supplementation reversed the inhibitory effect of BPTES on the CFs under Ang II stimulation. Furthermore, in vivo intraperitoneal injection of BPTES alleviated cardiac fibrosis of Ang II-treated mice. In conclusion, glutaminolysis plays an important role in the process of cardiac fibrosis induced by Ang II. Targeted inhibition of glutaminolysis may be a new strategy for the treatment of myocardial fibrosis.
Rats
;
Mice
;
Animals
;
Rats, Sprague-Dawley
;
Angiotensin II/pharmacology*
;
Fibroblasts
;
Mice, Inbred C57BL
;
Fibrosis
;
Collagen/pharmacology*
;
Collagen Type I/metabolism*
;
RNA, Messenger/metabolism*
;
Myocardium/pathology*

Result Analysis
Print
Save
E-mail