1.Andrographolide protects against atrial fibrillation by alleviating oxidative stress injury and promoting impaired mitochondrial bioenergetics.
Pengcheng YU ; Jiaru CAO ; Huaxin SUN ; Yingchao GONG ; Hangying YING ; Xinyu ZHOU ; Yuxing WANG ; Chenyang QI ; Hang YANG ; Qingbo LV ; Ling ZHANG ; Xia SHENG
Journal of Zhejiang University. Science. B 2023;24(7):632-649
		                        		
		                        			
		                        			Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia seen in clinical settings, which has been associated with substantial rates of mortality and morbidity. However, clinically available drugs have limited efficacy and adverse effects. We aimed to investigate the mechanisms of action of andrographolide (Andr) with respect to AF. We used network pharmacology approaches to investigate the possible therapeutic effect of Andr. To define the role of Andr in AF, HL-1 cells were pro-treated with Andr for 1 h before rapid electronic stimulation (RES) and rabbits were pro-treated for 1 d before rapid atrial pacing (RAP). Apoptosis, myofibril degradation, oxidative stress, and inflammation were determined. RNA sequencing (RNA-seq) was performed to investigate the relevant mechanism. Andr treatment attenuated RAP-induced atrial electrophysiological changes, inflammation, oxidative damage, and apoptosis both in vivo and in vitro. RNA-seq indicated that oxidative phosphorylation played an important role. Transmission electron microscopy and adenosine triphosphate (ATP) content assay respectively validated the morphological and functional changes in mitochondria. The translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) to the nucleus and the molecular docking suggested that Andr might exert a therapeutic effect by influencing the Keap1-Nrf2 complex. In conclusions, this study revealed that Andr is a potential preventive therapeutic drug toward AF via activating the translocation of Nrf2 to the nucleus and the upregulation of heme oxygenase-1 (HO-1) to promote mitochondrial bioenergetics.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Rabbits
		                        			;
		                        		
		                        			Atrial Fibrillation/metabolism*
		                        			;
		                        		
		                        			Kelch-Like ECH-Associated Protein 1/metabolism*
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			NF-E2-Related Factor 2/pharmacology*
		                        			;
		                        		
		                        			Molecular Docking Simulation
		                        			;
		                        		
		                        			Oxidative Stress
		                        			;
		                        		
		                        			Energy Metabolism
		                        			;
		                        		
		                        			Mitochondria/metabolism*
		                        			;
		                        		
		                        			Inflammation/metabolism*
		                        			;
		                        		
		                        			Heme Oxygenase-1
		                        			
		                        		
		                        	
2.Role and mechanism of SIRT1 in regulating Nrf2/HO-1 signaling pathway in septic liver injury.
Mengxiao CHEN ; Yiren ZHANG ; Yi WANG ; Tayier GULIFEIRE ; Xiangyou YU
Chinese Critical Care Medicine 2023;35(6):598-603
		                        		
		                        			OBJECTIVE:
		                        			To investigate the role and mechanism of silent information regulator 1 (SIRT1) in regulating nuclear factor E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway in oxidative stress and inflammatory response to sepsis-induced liver injury.
		                        		
		                        			METHODS:
		                        			A total of 24 male Sprague-Dawley (SD) rats were randomly divided into sham operation (Sham) group, cecal ligation and puncture (CLP) group, SIRT1 agonist SRT1720 pretreatment (CLP+SRT1720) group and SIRT1 inhibitor EX527 pretreatment (CLP+EX527) group, with 6 rats in each group. Two hours before operation, SRT1720 (10 mg/kg) or EX527 (10 mg/kg) were intraperitoneally injected into the CLP+SRT1720 group and CLP+EX527 group, respectively. Blood was collected from the abdominal aorta at 24 hours after modeling and the rats were sacrificed for liver tissue. The serum levels of interleukins (IL-6, IL-1β) and tumor necrosis factor-α (TNF-α) were detected by enzyme-linked immunosorbent assay (ELISA). The serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were detected by microplate method. Hematoxylin-eosin (HE) staining was used to observe the pathological injury of rats in each group. The levels of malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), glutathione (GSH) and superoxide dismutase (SOD) in liver tissue were detected by corresponding kits. The mRNA and protein expressions of SIRT1, Nrf2 and HO-1 in liver tissues were detected by real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting.
		                        		
		                        			RESULTS:
		                        			Compared with the Sham group, the serum levels of IL-6, IL-1β, TNF-α, ALT and AST in the CLP group were significantly increased; histopathological results showed that liver cords were disordered, hepatocytes were swollen and necrotic, and a large number of inflammatory cells infiltrated; the contents of MDA and 8-OHdG in liver tissue increased, while the contents of GSH and SOD decreased; and the mRNA and protein expressions of SIRT1, Nrf2 and HO-1 in liver tissues were significantly decreased. These results suggest that sepsis rats have liver dysfunction, and the levels of SIRT1, Nrf2, HO-1 and antioxidant protein in liver tissues were decreased, while the levels of oxidative stress and inflammation were increased. Compared with the CLP group, the levels of inflammatory factors and oxidative stress were significantly decreased in the CLP+SRT1720 group, the mRNA and protein expressions of SIRT1, Nrf2 and HO-1 were significantly increased [IL-6 (ng/L): 34.59±4.21 vs. 61.84±3.78, IL-1β (ng/L): 41.37±2.70 vs. 72.06±3.14, TNF-α (ng/L): 76.43±5.23 vs. 130.85±5.30, ALT (U/L): 30.71±3.63 vs. 64.23±4.59, AST (U/L): 94.57±6.08 vs. 145.15±6.86, MDA (μmol/g): 6.11±0.28 vs. 9.23±0.29, 8-OHdG (ng/L): 117.43±10.38 vs. 242.37±11.71, GSH (μmol/g): 11.93±0.88 vs. 7.66±0.47, SOD (kU/g): 121.58±5.05 vs. 83.57±4.84, SIRT1 mRNA (2-ΔΔCt): 1.20±0.13 vs. 0.46±0.02, Nrf2 mRNA (2-ΔΔCt): 1.21±0.12 vs. 0.58±0.03, HO-1 mRNA (2-ΔΔCt): 1.71±0.06 vs. 0.48±0.07, SIRT1 protein (SIRT1/β-actin): 0.89±0.04 vs. 0.58±0.03, Nrf2 protein (Nrf2/β-actin): 0.87±0.08 vs. 0.51±0.09, HO-1 protein (HO-1/β-actin): 0.93±0.14 vs. 0.54±0.12, all P < 0.05], these results indicated that SIRT1 agonist SRT1720 pretreatment could improve liver injury in sepsis rats. However, pretreatment with SIRT1 inhibitor EX527 showed the opposite effect [IL-6 (ng/L): 81.05±6.47 vs. 61.84±3.78, IL-1β (ng/L): 93.89±5.83 vs. 72.06±3.14, TNF-α (ng/L): 177.67±5.12 vs. 130.85±5.30, ALT (U/L): 89.33±9.52 vs. 64.23±4.59, AST (U/L): 179.59±6.44 vs. 145.15±6.86, MDA (μmol/g): 11.39±0.51 vs. 9.23±0.29, 8-OHdG (ng/L): 328.83±11.26 vs. 242.37±11.71, GSH (μmol/g): 5.07±0.34 vs. 7.66±0.47, SOD (kU/g): 59.37±4.28 vs. 83.57±4.84, SIRT1 mRNA (2-ΔΔCt): 0.34±0.03 vs. 0.46±0.02, Nrf2 mRNA (2-ΔΔCt): 0.46±0.04 vs. 0.58±0.03, HO-1 mRNA (2-ΔΔCt): 0.21±0.03 vs. 0.48±0.07, SIRT1 protein (SIRT1/β-actin): 0.47±0.04 vs. 0.58±0.03, Nrf2 protein (Nrf2/β-actin): 0.32±0.07 vs. 0.51±0.09, HO-1 protein (HO-1/β-actin): 0.19±0.09 vs. 0.54±0.12, all P < 0.05].
		                        		
		                        			CONCLUSIONS
		                        			SIRT1 can inhibit the release of proinflammatory factors and alleviate the oxidative damage of hepatocytes by activating Nrf2/HO-1 signaling pathway, thus playing a protective role against CLP-induced liver injury.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Actins/metabolism*
		                        			;
		                        		
		                        			Chemical and Drug Induced Liver Injury, Chronic
		                        			;
		                        		
		                        			Heme Oxygenase-1/metabolism*
		                        			;
		                        		
		                        			Interleukin-6
		                        			;
		                        		
		                        			NF-E2-Related Factor 2/metabolism*
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			RNA, Messenger
		                        			;
		                        		
		                        			Sepsis/metabolism*
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Sirtuin 1/metabolism*
		                        			;
		                        		
		                        			Superoxide Dismutase/metabolism*
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			
		                        		
		                        	
3.Protective Effects of Anthocyanins Extracted from Vaccinium Uliginosum on 661W Cells Against Microwave-Induced Retinal Damage.
Lan YIN ; Si-Jun FAN ; Mao-Nian ZHANG
Chinese journal of integrative medicine 2022;28(7):620-626
		                        		
		                        			OBJECTIVE:
		                        			To study the protective effect of anthocyanins extracted from Vaccinium Uliginosum (VU) on retinal 661W cells against microwave radiation induced retinal injury.
		                        		
		                        			METHODS:
		                        			661W cells were divided into 6 groups, including control, model [661W cells radiated by microwave (30 mW/cm2, 1 h)] and VU groups [661W cells pretreated with anthocyanins extracted from VU (25, 50, 100 and 200 µg/mL, respectively) for 48 h, and radiated by microwave 30 mW/cm2, 1 h]. After treatment with different interventions, the cell apoptosis index (AI) was determined using Heochst staining; contents of malonaldehyde (MDA), glutataione (GSH), and activity of superoxide dismutase (SOD) were measured. mRNA expressions of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1(HO-1) were detected by real time quantitative polymerase chain reaction, and the expression of HO-1 protein was examined by Western blot analysis. Nucleus and cytoplasm were separated and Nrf2 protein expression was further verified by Western blot analysis.
		                        		
		                        			RESULTS:
		                        			There was significant difference in AI among the groups (F=322.83, P<;0.05). Compared with the control group, AI was significantly higher in the model group and was lower in 4 VU-pretreated groups (P<;0.05). Linear regression analysis showed the decline of AI was in a dose-dependent manner with VU treatment (r=0.8419, P<;0.05). The MDA and GSH contents of 661W cells in VU-treated groups were significantly lower than the model group (P<;0.05). Compared with the model group, the SOD activity in the VU-treated groups (50, 100 and 200 µg/mL) was significantly higher (all P<;0.05). The Nrf2 and HO-1 mRNA expressions were slightly increased after irradiation, and obviously increased in 100 µg/mL VU-treated group. After irradiation, the relative expressions of HO-1 and Nrf2 proteins in nucleus were slightly increased (P<;0.05), and the changes in cytoplasm were not obvious, whereas it was significantly increased in both nucleus and cytoplasm in the VU treatment groups.
		                        		
		                        			CONCLUSIONS
		                        			Anthocyanins extracted from VU could reduce apoptosis, stabilize cell membrane, and alleviate oxidant injury of mouse retinal photoreceptor 661W cells. The mechanism might be through activating Nrf2/HO-1 signal pathway and inducing HO-1 transcription and translation.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Anthocyanins/therapeutic use*
		                        			;
		                        		
		                        			Blueberry Plants/metabolism*
		                        			;
		                        		
		                        			Heme Oxygenase-1/metabolism*
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Microwaves
		                        			;
		                        		
		                        			NF-E2-Related Factor 2/metabolism*
		                        			;
		                        		
		                        			Oxidative Stress
		                        			;
		                        		
		                        			RNA, Messenger/metabolism*
		                        			;
		                        		
		                        			Superoxide Dismutase/metabolism*
		                        			
		                        		
		                        	
4.Sagittaria sagittifolia polysaccharides regulates Nrf2/HO-1 to relieve liver injury caused by multiple heavy metals in vivo and in vitro.
Hong-Shuang LIU ; Ya-Lan LI ; Jing-Wei KONG ; Man-Yu ZHOU ; Rui-Juan DONG ; Dong-Yu GE ; Jia-Jing LIU ; Gui-Ying PENG ; Yan LIAO
China Journal of Chinese Materia Medica 2022;47(7):1913-1920
		                        		
		                        			
		                        			This study explored whether Sagittaria sagittifolia polysaccharides(SSP) activates the nuclear factor erythroid-2-related factor2(Nrf2)/heme oxygenase-1(HO-1) signaling pathway to protect against liver damage jointly induced by multiple heavy metals. First, based on the proportion of dietary intake of six heavy metals in rice available in Beijing market, a heavy metal mixture was prepared for inducing mouse liver injury and HepG2 cell injury. Forty male Kunming mice were divided into five groups: control group, model group, glutathione positive control group, and low-and high-dose SSP groups, with eight mice in each group. After 30 days of intragastric administration, the liver injury in mice was observed by HE staining. In the in vitro experiment, MTT assay was conducted to detect the effects of SSP at 0.25, 0.5, 1, and 2 mg·mL~(-1) on HepG2 cell survival at different time points. The content of alanine transaminase(ALT) and aspartate aminotransferase(AST) in the 48-h cell culture fluid was measured using micro-plate cultivation method, followed by the detection of the change in reactive oxygen species(ROS) content by flow cytometry. The mRNA expression levels of Nrf2 and HO-1 in cells were determined by RT-PCR, and their protein expression by Western blot. HE staining results showed that compared with the model group, the SSP administration groups exhibited significantly alleviated inflammatory cell infiltration and fatty infiltration in the liver, with better outcomes observed in the high-dose SSP group. In the in vitro MTT assay, compared with the model group, SSP at four concentrations all significantly increased the cell survival rate, decreased the ALT, AST, and ROS content(P<0.05), and down-regulated Nrf2 and HO-1 mRNA and protein expression(P<0.05). SSP significantly improves inflammatory infiltration in the liver tissue of mice exposed to a variety of heavy metals and corrects the liver fat degeneration, which may be related to its regulation of the Nrf2/HO-1 signaling pathway, reduction of ROS, and alleviation of oxidative damage.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Heme Oxygenase-1/metabolism*
		                        			;
		                        		
		                        			Liver
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Metals, Heavy/metabolism*
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			NF-E2-Related Factor 2/metabolism*
		                        			;
		                        		
		                        			Oxidative Stress
		                        			;
		                        		
		                        			Polysaccharides/pharmacology*
		                        			;
		                        		
		                        			RNA, Messenger/metabolism*
		                        			;
		                        		
		                        			Reactive Oxygen Species/metabolism*
		                        			;
		                        		
		                        			Sagittaria/metabolism*
		                        			
		                        		
		                        	
5.Hyperoside protects mouse spermatocytes GC-2 cells from oxidative damage by activating the Keap1/Nrf2/HO-1 pathway.
Yan Yan ZHU ; Tong Sheng WANG ; Ning DAI ; Meng Yun DENG ; Hong Juan LIU ; Xiao Hui TONG ; Li LI
Journal of Southern Medical University 2022;42(5):673-680
		                        		
		                        			OBJECTIVE:
		                        			To study the protective effect of hyperoside (Hyp) against ydrogen peroxide (H2O2)- induced oxidative damage in mouse spermatocytes GC-2 cells and explore the role of the Keap1/Nrf2/HO-1 pathway in this protective mechanism.
		                        		
		                        			METHODS:
		                        			GC-2 cells were treated with 2.5 mmol/L azaacetylcysteine (NAC), 50, 100, and 200 μmol/L hyperoside, or the culture medium for 48 h before exposure to H2O2 (150 μmol/L) for 2 h. CCK-8 assay was used to detect the changes in cell viability, and cell apoptosis was analyzed using flow cytometry. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), catalase (CAT) activity and malondialdehyde (MDA) in the culture medium. Western blotting and RT-qPCR were used to detect the protein and mRNA expression levels of nuclear factor erythroid 2-related factor2 (Nrf2), Kelch-like ECH-associated protein 1 (Keap1), and heme oxygenase-1 (HO-1); the nuclear translocation of Nrf2 was detected using immunofluorescence assay.
		                        		
		                        			RESULTS:
		                        			Exposure to H2O2 significantly lowered the proliferation rate, reduced the activities of SOD, GSH and CAT, and obviously increased MDA content, cell apoptosis rate, and the expressions of Keap1 and Nrf2 mRNA and Keap1 protein in GC-2 cells (P < 0.05 or 0.01). Treatment of the cells prior to H2O2 exposure with either NAC or 200 μmol/L hyperoside significantly increased the cell proliferation rate, enhanced the activities of SOD, GSH-PX and CAT, and lowered MDA content and cell apoptosis rate (P < 0.05). Treatment with 200 μmol/L hyperoside significantly decreased the mRNA and protein expressions of Keap1 and increased the expressions of HO-1 mRNA and the protein expressions of Nrf2 and HO-1 (P < 0.05 or 0.01). Hyperoside also caused obvious nuclear translocation of Nrf2 in the cells (P < 0.05).
		                        		
		                        			CONCLUSION
		                        			Hyperoside protects GC-2 cells against H2O2- induced oxidative damage possibly by activation of the Keap1/Nrf2/HO-1 signaling pathway.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antioxidants/metabolism*
		                        			;
		                        		
		                        			Heme Oxygenase-1/metabolism*
		                        			;
		                        		
		                        			Hydrogen Peroxide/pharmacology*
		                        			;
		                        		
		                        			Kelch-Like ECH-Associated Protein 1/metabolism*
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			NF-E2-Related Factor 2/metabolism*
		                        			;
		                        		
		                        			Oxidative Stress
		                        			;
		                        		
		                        			Quercetin/analogs & derivatives*
		                        			;
		                        		
		                        			RNA, Messenger/metabolism*
		                        			;
		                        		
		                        			Spermatocytes/metabolism*
		                        			;
		                        		
		                        			Superoxide Dismutase/metabolism*
		                        			
		                        		
		                        	
6.Research Progress of HO1 on AntiOxidative Stress Injury of MSC --Review.
Li Ping ZHAO ; Xiao Yan LI ; Hai BAI
Journal of Experimental Hematology 2022;30(2):613-617
		                        		
		                        			
		                        			Mesenchymal stem cell (MSC) is widely used in cell therapy because of its high proliferative and multi directional differentiation potential as well as its low immunogenicity. The transplantation of MSC can help the repair of the injured organs, however, the MSC transplanted to the local organs are affected by oxidative stress and lead to premature aging or apoptosis. Heme oxygenase 1 (HO1) is a key ratelimiting enzyme in the process of heme metabolism, which has the functions of antiinflammation, antioxidation, antiapoptosis, antiaging, reducing cell damage and promoting angiogenesis. Induced high expression of HO1 in MSC could increase the ability of MSC against oxidative stress injury, delay the senescence and apoptosis of MSC, and alleviate cell injury. In this reviews, the research progress of HO1 on antioxidative stress injury of MSC.
		                        		
		                        		
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			Cell Differentiation
		                        			;
		                        		
		                        			Heme Oxygenase-1/metabolism*
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Mesenchymal Stem Cell Transplantation
		                        			;
		                        		
		                        			Mesenchymal Stem Cells
		                        			;
		                        		
		                        			Oxidative Stress
		                        			
		                        		
		                        	
7.Effect of methyl eugenol on hypoxia/reoxygenation injury of human renal tubular epithelial cells and its mechanism.
Bai-Cheng KUANG ; Shuai-Heng HOU ; G Ji ZHAN ; Meng-Qin WANG ; Jia-Si ZHANG ; Kai-Lun SUN ; Zhi-Heng WANG ; Qing-Wen LI ; Nian-Qiao GONG
China Journal of Chinese Materia Medica 2021;46(24):6502-6510
		                        		
		                        			
		                        			This study aimed to investigate the effect of methyl eugenol(ME) on hypoxia/reoxygenation(H/R)-induced injury of human renal tubular epithelial HK-2 cells and its mechanism. The viability of HK-2 cells cultured with different concentrations of ME and exposed to H/R was detected by cell counting kit-8(CCK-8) assay. The effect of ME on the morphology of HK-2 cells was observed under an inverted microscope. The content of intracellular reactive oxygen species in different groups was detected after 2',7'-dichlorodihydrofluorescein diacetate(DCFH-DA) fluorescence staining. Cell apoptosis was determined by flow cytometry. Changes in mitochondrial membrane potential were monitored by JC-1 dye. The concentrations of nuclear factor erythroid 2 related factor 2(Nrf2), heme oxygenase-1(HO-1), and nicotinamide adenine dinucleotide phosphatase oxidase 4(Nox4) were measured by Western blot, followed by the assay of Nrf2 concentration changes in cytoplasm and nucleus by confocal fluorescence staining. The results showed that when the concentration of ME was 0-40 μmol·L~(-1), the activity of HK-2 cells was not affected. Compared with the model group, ME enhanced the activity of HK-2 cells and the cell morphology was normal. As revealed by further experiments, ME inhibited the release of reactive oxygen species and the decline in mitochondrial membrane potential of HK-2 cells after H/R injury, promoted Nrf2/HO-1 expression and Nrf2 translocation to the nucleus, and down-regulated the expression of Nox4, thereby significantly reducing apoptosis. This protective effect of ME could be reversed by the specific Nrf2 inhibitor ML385. These findings have preliminarily proved that ME effectively protected HK-2 cells against H/R injury, which might be related to its promotion of Nrf2/HO-1 signaling pathway and inhibition of Nox4. Such exploration on the possible mechanism of ME in the treatment of renal ischemia-reperfusion injury(IRI) and protection of organ function from the perspective of antioxidant stress has provided reference for related research on the treatment of acute kidney injury with traditional Chinese medicine.
		                        		
		                        		
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			Epithelial Cells/metabolism*
		                        			;
		                        		
		                        			Eugenol/pharmacology*
		                        			;
		                        		
		                        			Heme Oxygenase-1/metabolism*
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Hypoxia
		                        			;
		                        		
		                        			NF-E2-Related Factor 2/metabolism*
		                        			;
		                        		
		                        			Oxidative Stress
		                        			;
		                        		
		                        			Reactive Oxygen Species
		                        			;
		                        		
		                        			Reperfusion Injury/drug therapy*
		                        			
		                        		
		                        	
8.Arsenic Trioxide Combining Leflunomide Activates Nrf2-ARE-HO-1 Signaling Pathway and Protects Heart Xenografts.
Teng-da WANG ; Song-Lin XU ; Zheng-Yi YU ; Shao-Bin NI ; Cheng ZHANG ; Zhi-Xing JIAO
Chinese journal of integrative medicine 2021;27(10):760-766
		                        		
		                        			OBJECTIVE:
		                        			To investigate the molecular mechanisms underlying the effects of arsenic trioxide (As
		                        		
		                        			METHODS:
		                        			Transplantation of LVG hamster hearts to Lewis rats was performed by anastomosis of vessels in the neck using end-to-end anastomosis with a non-suture cuff technique. Four groups of recipient rats (n=6 in each) were treated with normal saline (control), As
		                        		
		                        			RESULTS:
		                        			Expression of Nrf2-ARE-HO-1 signaling pathway was upregulated in heart xenografts in rats treated with As
		                        		
		                        			CONCLUSION
		                        			Combination treatment with As
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Arsenic Trioxide
		                        			;
		                        		
		                        			Cricetinae
		                        			;
		                        		
		                        			Heart Transplantation
		                        			;
		                        		
		                        			Heme Oxygenase-1/metabolism*
		                        			;
		                        		
		                        			Heterografts
		                        			;
		                        		
		                        			Leflunomide
		                        			;
		                        		
		                        			NF-E2-Related Factor 2/metabolism*
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Inbred Lew
		                        			;
		                        		
		                        			Signal Transduction
		                        			
		                        		
		                        	
9.Bone marrow-derived mesenchymal stem cells modulate autophagy in RAW264.7 macrophages via the phosphoinositide 3-kinase/protein kinase B/heme oxygenase-1 signaling pathway under oxygen-glucose deprivation/restoration conditions.
Chinese Medical Journal 2021;134(6):699-707
		                        		
		                        			BACKGROUND:
		                        			Autophagy of alveolar macrophages is a crucial process in ischemia/reperfusion injury-induced acute lung injury (ALI). Bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent cells with the potential for repairing injured sites and regulating autophagy. This study was to investigate the influence of BM-MSCs on autophagy of macrophages in the oxygen-glucose deprivation/restoration (OGD/R) microenvironment and to explore the potential mechanism.
		                        		
		                        			METHODS:
		                        			We established a co-culture system of macrophages (RAW264.7) with BM-MSCs under OGD/R conditions in vitro. RAW264.7 cells were transfected with recombinant adenovirus (Ad-mCherry-GFP-LC3B) and autophagic status of RAW264.7 cells was observed under a fluorescence microscope. Autophagy-related proteins light chain 3 (LC3)-I, LC3-II, and p62 in RAW264.7 cells were detected by Western blotting. We used microarray expression analysis to identify the differently expressed genes between OGD/R treated macrophages and macrophages co-culture with BM-MSCs. We investigated the gene heme oxygenase-1 (HO-1), which is downstream of the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway.
		                        		
		                        			RESULTS:
		                        			The ratio of LC3-II/LC3-I of OGD/R treated RAW264.7 cells was increased (1.27 ± 0.20 vs. 0.44 ± 0.08, t = 6.67, P  < 0.05), while the expression of p62 was decreased (0.77 ± 0.04 vs. 0.95 ± 0.10, t = 2.90, P  < 0.05), and PI3K (0.40 ± 0.06 vs. 0.63 ± 0.10, t = 3.42, P  < 0.05) and p-Akt/Akt ratio was also decreased (0.39 ± 0.02 vs. 0.58 ± 0.03, t = 9.13, P  < 0.05). BM-MSCs reduced the LC3-II/LC3-I ratio of OGD/R treated RAW264.7 cells (0.68 ± 0.14 vs. 1.27 ± 0.20, t = 4.12, P  < 0.05), up-regulated p62 expression (1.10 ± 0.20 vs. 0.77 ± 0.04, t = 2.80, P  < 0.05), and up-regulated PI3K (0.54 ± 0.05 vs. 0.40 ± 0.06, t = 3.11, P  < 0.05) and p-Akt/Akt ratios (0.52 ± 0.05 vs. 0.39 ± 0.02, t = 9.13, P  < 0.05). A whole-genome microarray assay screened the differentially expressed gene HO-1, which is downstream of the PI3K/Akt signaling pathway, and the alteration of HO-1 mRNA and protein expression was consistent with the data on PI3K/Akt pathway.
		                        		
		                        			CONCLUSIONS
		                        			Our results suggest the existence of the PI3K/Akt/HO-1 signaling pathway in RAW264.7 cells under OGD/R circumstances in vitro, revealing the mechanism underlying BM-MSC-mediated regulation of autophagy and enriching the understanding of potential therapeutic targets for the treatment of ALI.
		                        		
		                        		
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			Autophagy
		                        			;
		                        		
		                        			Bone Marrow
		                        			;
		                        		
		                        			Glucose
		                        			;
		                        		
		                        			Heme Oxygenase-1/metabolism*
		                        			;
		                        		
		                        			Macrophages/metabolism*
		                        			;
		                        		
		                        			Mesenchymal Stem Cells/metabolism*
		                        			;
		                        		
		                        			Oxygen
		                        			;
		                        		
		                        			Phosphatidylinositol 3-Kinase
		                        			;
		                        		
		                        			Phosphatidylinositol 3-Kinases/metabolism*
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt/metabolism*
		                        			;
		                        		
		                        			Signal Transduction
		                        			
		                        		
		                        	
10.Effect of Nrf2/HO-1 signaling pathway in intestinal protection by Sishen Pills against ulcerative colitis in mice.
Xue-Xia ZHANG ; Jian-Wen JIN ; Chang-He LIU ; Min ZHOU ; Ying-Xin HE ; Fei WANG ; Fang-Zhou LIU
China Journal of Chinese Materia Medica 2021;46(16):4187-4192
		                        		
		                        			
		                        			The present study aimed to explore the effect of nuclear factor erythroid 2 related factor 2(Nrf2)/heme oxygenase-1(HO-1) signaling pathway in intestinal protection by Sishen Pills against ulcerative colitis(UC). After the UC model was induced by 3% dextran sodium sulfate(DSS), experimental animals were randomly divided into control group, model group, salazosulfapyridine(SASP) group, and low-and high-dose Sishen Pills groups. Drug intervention(ig) was performed for seven consecutive days during modeling. On the 7 th day, the mice were euthanized. The body weight and colon length were recorded, and the histopathological changes of the colon were observed by HE staining. Serum interleukin-6(IL-6), tumor necrosis factor-α(TNF-α), total antioxidant capacity(T-AOC), malondialdehyde(MDA), and reactive oxygen species(ROS) were detected by ELISA. The protein and mRNA expression of Nrf2, HO-1, and NADPH quinine oxidoreductase-1(NQO-1) was determined by Western blot and reverse transcription-polymerase chain reaction(RT-PCR). Compared with the normal group, the model group exhibited reduced body weight, colon length, and T-AOC, increased IL-6, TNF-α, MDA, and ROS, and diminished protein and mRNA expression of Nrf2, HO-1, and NQO-1 in the colon tissues. Compared with the model group, the SASP group and high-dose Sishen Pills group showed elevated body weight, colon length, and T-AOC, lowered IL-6, TNF-α, MDA, and ROS levels, and increased protein and mRNA expression of Nrf2, HO-1, and NQO-1 in the colon tissues. As assessed by HE staining, Sishen Pills could improve the pathological changes of the colon. The findings suggested that Sishen Pills could protect the colon against UC induced by 3% DSS. The specific mechanism of action may be related to the anti-inflammatory and anti-oxidative stress effects by the activation of the Nrf2/HO-1 signaling pathway.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Colitis, Ulcerative/genetics*
		                        			;
		                        		
		                        			Dextran Sulfate
		                        			;
		                        		
		                        			Heme Oxygenase-1/metabolism*
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			NF-E2-Related Factor 2/metabolism*
		                        			;
		                        		
		                        			Signal Transduction
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail