1.Clinical development of chimeric antigen receptor-T cell therapy for hematological malignancies.
Chinese Medical Journal 2023;136(19):2285-2296
Cellular therapies have revolutionized the treatment of hematological malignancies since their conception and rapid development. Chimeric antigen receptor (CAR)-T cell therapy is the most widely applied cellular therapy. Since the Food and Drug Administration approved two CD19-CAR-T products for clinical treatment of relapsed/refractory acute lymphoblastic leukemia and diffuse large B cell lymphoma in 2017, five more CAR-T cell products were subsequently approved for treating multiple myeloma or B cell malignancies. Moreover, clinical trials of CAR-T cell therapy for treating other hematological malignancies are ongoing. Both China and the United States have contributed significantly to the development of clinical trials. However, CAR-T cell therapy has many limitations such as a high relapse rate, adverse side effects, and restricted availability. Various methods are being implemented in clinical trials to address these issues, some of which have demonstrated promising breakthroughs. This review summarizes developments in CAR-T cell trials and advances in CAR-T cell therapy.
Humans
;
Receptors, Chimeric Antigen
;
Receptors, Antigen, T-Cell/genetics*
;
Immunotherapy, Adoptive/adverse effects*
;
Hematologic Neoplasms/therapy*
;
Multiple Myeloma/etiology*
;
Cell- and Tissue-Based Therapy
2.Research Progress and Application of Daratumumab in Non-Multiple Myeloma--Review.
Journal of Experimental Hematology 2023;31(5):1574-1578
Daratumumab is the first CD38 monoclonal antibody drug approved for the treatment of patients with multiple myeloma. It can bind to CD38 expressed by tumor cells, inhibit tumor cell growth and induce myeloma cell apoptosis through a variety of immune-related mechanisms. Meanwhile, CD38 is also expressed in other cells, including regulatory T cells, regulatory B cells and myeloid-derived suppressor cells, which provides a theoretical basis for the treatment of hematological tumor diseases other than non-multiple myeloma diseases. This article reviews the research progress and application of this part.
Humans
;
Multiple Myeloma/pathology*
;
ADP-ribosyl Cyclase 1
;
Antibodies, Monoclonal/pharmacology*
;
Hematologic Neoplasms/drug therapy*
3.Application of PROTACs in Hematological Malignancies--Review.
Journal of Experimental Hematology 2023;31(6):1921-1924
Proteolysis-targeting chimeras (PROTACs) are heterobifunctional small molecules by utilizing the ubiquitin proteasome system (UPS) to degrade proteins of interest. PROTACs have exhibited unprecedented efficacy and specificity in degrading various oncogenic proteins because of their unique mechanism of action, ability to target "undruggable" and mutant proteins. A series of PROTACs have been developed to degrade multiple key protein targets for the treatment of hematologic malignancy. Notably, PROTACs that target BCL-XL, IRAK4, STAT3 and BTK have entered clinical trials. The known PROTACs that have the potential to be used to treat various hematological malignancies are systematically summarized in this review.
Humans
;
Hematologic Neoplasms/drug therapy*
;
Proteasome Endopeptidase Complex/metabolism*
;
Ubiquitin-Protein Ligases/metabolism*
;
Proteolysis Targeting Chimera
4.Clinical efficacy and long-term immunogenicity of an early triple dose regimen of SARS-CoV-2 mRNA vaccination in cancer patients.
Matilda Xinwei LEE ; Siyu PENG ; Ainsley Ryan Yan Bin LEE ; Shi Yin WONG ; Ryan Yong Kiat TAY ; Jiaqi LI ; Areeba TARIQ ; Claire Xin Yi GOH ; Ying Kiat TAN ; Benjamin Kye Jyn TAN ; Chong Boon TEO ; Esther CHAN ; Melissa OOI ; Wee Joo CHNG ; Cheng Ean CHEE ; Carol L F HO ; Robert John WALSH ; Maggie WONG ; Yan SU ; Lezhava ALEXANDER ; Sunil Kumar SETHI ; Shaun Shi Yan TAN ; Yiong Huak CHAN ; Kelvin Bryan TAN ; Soo Chin LEE ; Louis Yi Ann CHAI ; Raghav SUNDAR
Annals of the Academy of Medicine, Singapore 2023;52(1):8-16
INTRODUCTION:
Three doses of SARS-CoV-2 mRNA vaccines have been recommended for cancer patients to reduce the risk of severe disease. Anti-neoplastic treatment, such as chemotherapy, may affect long-term vaccine immunogenicity.
METHOD:
Patients with solid or haematological cancer were recruited from 2 hospitals between July 2021 and March 2022. Humoral response was evaluated using GenScript cPASS surrogate virus neutralisation assays. Clinical outcomes were obtained from medical records and national mandatory-reporting databases.
RESULTS:
A total of 273 patients were recruited, with 40 having haematological malignancies and the rest solid tumours. Among the participants, 204 (74.7%) were receiving active cancer therapy, including 98 (35.9%) undergoing systemic chemotherapy and the rest targeted therapy or immunotherapy. All patients were seronegative at baseline. Seroconversion rates after receiving 1, 2 and 3 doses of SARS-CoV-2 mRNA vaccination were 35.2%, 79.4% and 92.4%, respectively. After 3 doses, patients on active treatment for haematological malignancies had lower antibodies (57.3%±46.2) when compared to patients on immunotherapy (94.1%±9.56, P<0.05) and chemotherapy (92.8%±18.1, P<0.05). SARS-CoV-2 infection was reported in 77 (28.2%) patients, of which 18 were severe. No patient receiving a third dose within 90 days of the second dose experienced severe infection.
CONCLUSION
This study demonstrates the benefit of early administration of the third dose among cancer patients.
Humans
;
SARS-CoV-2
;
COVID-19/prevention & control*
;
Treatment Outcome
;
Neoplasms/drug therapy*
;
Hematologic Neoplasms
;
Vaccination
;
RNA, Messenger
;
Antibodies, Viral
;
Immunogenicity, Vaccine
5.Challenges and optimal strategies of CAR T therapy for hematological malignancies.
Yajing ZHANG ; Yang XU ; Xiuyong DANG ; Zeyu ZHU ; Wenbin QIAN ; Aibin LIANG ; Weidong HAN
Chinese Medical Journal 2023;136(3):269-279
Remarkable improvement relative to traditional approaches in the treatment of hematological malignancies by chimeric antigen receptor (CAR) T-cell therapy has promoted sequential approvals of eight commercial CAR T products within last 5 years. Although CAR T cells' productization is now rapidly boosting their extensive clinical application in real-world patients, the limitation of their clinical efficacy and related toxicities inspire further optimization of CAR structure and substantial development of innovative trials in various scenarios. Herein, we first summarized the current status and major progress in CAR T therapy for hematological malignancies, then described crucial factors which possibly compromise the clinical efficacies of CAR T cells, such as CAR T cell exhaustion and loss of antigen, and finally, we discussed the potential optimization strategies to tackle the challenges in the field of CAR T therapy.
Humans
;
Receptors, Chimeric Antigen/therapeutic use*
;
Immunotherapy, Adoptive
;
Hematologic Neoplasms/therapy*
;
Treatment Outcome
6.Clinical Characteristics and Treatment of Blastic Plasmacytoid Dendritic Cell Neoplasm.
Xiao-Li ZHANG ; Bing LIU ; Nan LI ; Lu-Ke LI ; Xuan-Jing JI ; Xue-Fang ZHOU ; Min-Fang WANG ; Hui-Li XU
Journal of Experimental Hematology 2023;31(1):254-260
OBJECTIVE:
To explore the clinical manifestations, diagnosis, treatment and prognosis of blastic plasmacytoid dendritic cell neoplasm(BPDCN).
METHODS:
The clinical features, bone marrow morphology and immunophenotyping, treatment and prognosis of 4 patients with BPDCN were analyzed retrospectively.
RESULTS:
4 patients had bone marrow, spleen and lymph nodes involvement, 2 patients had skin lesions, and 3 patients had central nervous system infiltration. Tailing phenomenon of abnormally cells could be seen in bone marrow. The immunophenotyping showed that CD56, CD4 and CD123 expression was observed in 4 patients, and CD304 in 3 patients. One patient refused chemotherapy and died early. Both patients achieved complete remission after the initial treatment with DA+VP regimen, 1 of them achieved complete remission after recurrence by using the same regimen again. One patient failed to respond to reduced dose of DA+VP chemotherapy, and then achieved complete remission with venetoclax+azacitidine.
CONCLUSION
The malignant cells in BPDCN patients often infiltrate bone marrow, spleen and lymph nodes, and have specical phenotypes, with poor prognosis. The treatment should take into account both myeloid and lymphatic systems. The treatment containing new drugs such as BCL-2 inhibitors combined with demethylation drugs is worth trying.
Humans
;
Dendritic Cells
;
Retrospective Studies
;
Skin Neoplasms/pathology*
;
Antineoplastic Agents/therapeutic use*
;
Bone Marrow/pathology*
;
Myeloproliferative Disorders
;
Hematologic Neoplasms/drug therapy*
8.Efficacy and safety of secondary allogeneic hematopoietic stem cell transplantation in 70 patients with recurrent hematologic malignancies after transplantation.
Ting Ting HAN ; Yang LIU ; Yao CHEN ; Yuan Yuan ZHANG ; Hai Xia FU ; Chen Hua YAN ; Xiao Dong MO ; Feng Rong WANG ; Jing Zhi WANG ; Wei HAN ; Yuhong CHEN ; Huan CHEN ; Yuqian SUN ; Yi Fei CHENG ; Yu WANG ; Xiao Hui ZHANG ; Xiao Jun HUANG ; Lan Ping XU
Chinese Journal of Hematology 2023;44(6):458-464
Objectives: To investigate the role of donor change in the second hematopoietic stem cell transplantation (HSCT2) for hematological relapse of malignant hematology after the first transplantation (HSCT1) . Methods: We retrospectively analyzed patients with relapsed hematological malignancies who received HSCT2 at our single center between Mar 1998 and Dec 2020. A total of 70 patients were enrolled[49 males and 21 females; median age, 31.5 (3-61) yr]. Results: Forty-nine male and 21 female patients were enrolled in the trial. At the time of HSCT2, the median age was 31.5 (3-61) years old. Thirty-one patients were diagnosed with acute myeloid leukemia, 23 patients with ALL, and 16 patients with MDS or other malignant hematology disease. Thirty patients had HSCT2 with donor change, and 40 patients underwent HSCT2 without donor change. The median relapse time after HSCT1 was 245.5 (26-2 905) days. After HSCT2, 70 patients had neutrophil engraftment, and 62 (88.6%) had platelet engraftment. The cumulative incidence of platelet engraftment was (93.1±4.7) % in patients with donor change and (86.0±5.7) % in patients without donor change (P=0.636). The cumulative incidence of CMV infection in patients with and without donor change was (64.0±10.3) % and (37.0±7.8) % (P=0.053), respectively. The cumulative incidence of grade Ⅱ-Ⅳ acute graft versus host disease was (19.4±7.9) % vs (31.3±7.5) %, respectively (P=0.227). The cumulative incidence of TRM 100-day post HSCT2 was (9.2±5.1) % vs (6.7±4.6) % (P=0.648), and the cumulative incidence of chronic graft versus host disease at 1-yr post-HSCT2 was (36.7±11.4) % versus (65.6±9.1) % (P=0.031). With a median follow-up of 767 (271-4 936) days, 38 patients had complete remission (CR), and three patients had persistent disease. The CR rate was 92.7%. The cumulative incidences of overall survival (OS) and disease-free survival (DFS) 2 yr after HSCT2 were 25.8% and 23.7%, respectively. The cumulative incidence of relapse, OS, and DFS was (52.6±11.6) % vs (62.4±11.3) % (P=0.423), (28.3±8.6) % vs (23.8±7.5) % (P=0.643), and (28.3±8.6) % vs (22.3±7.7) % (P=0.787), respectively, in patients with changed donor compared with patients with the original donor. Relapses within 6 months post-HSCT1 and with persistent disease before HSCT2 were risk factors for OS, DFS, and CIR. Disease status before HSCT2 and early relapse (within 6 months post-HSCT1) was an independent risk factor for OS, DFS, and CIR post-HSCT2. Conclusion: Our findings indicate that changing donors did not affect the clinical outcome of HSCT2.
Humans
;
Male
;
Female
;
Adult
;
Child, Preschool
;
Child
;
Adolescent
;
Young Adult
;
Middle Aged
;
Retrospective Studies
;
Hematologic Neoplasms/therapy*
;
Hematopoietic Stem Cell Transplantation/adverse effects*
;
Leukemia, Myeloid, Acute/therapy*
;
Recurrence
;
Graft vs Host Disease/etiology*
;
Chronic Disease
9.Second allogeneic hematopoietic stem cell transplantation with reduced-intensity conditioning and donor changes in relapsed hematological malignancies after the first allogeneic transplant.
Yong Qiang ZHAO ; Yan Zhi SONG ; Zhi Hui LI ; Fan YANG ; Teng XU ; Fei Fei LI ; Dong Fang YANG ; Tong WU
Chinese Journal of Hematology 2023;44(6):465-471
Objective: The purpose of this study was to assess the safety and efficacy of a second allogeneic hematopoietic stem cell transplantation (allo-HSCT) with reduced-intensity conditioning (RIC) in patients with hematological malignancies who had relapsed after the first allo-HSCT. Methods: Between April 2018 and June 2021, 44 patients with hematological malignancies (B-ALL 23, T-ALL/T-LBL 4, AML15, and MDS 2) were enrolled and retrospectively examined. Unrelated donors (n=12) or haploidentical donors (n=32) were used. Donors were replaced in all patients for the second allo-HSCT. Hematological and immunological germline predisposition genes and hematopoietic and immune function tests were used to select the best-related donor. Total body irradiation (TBI) /fludarabine (FLU) -based (n=38), busulfan (BU) /FLU-based (n=4), total marrow irradiation (TMI) /FLU-based (n=1), and BU/cladribine-based (n=1) were the RIC regimens used. For graft versus host disease (GVHD) prevention, cyclosporine, mycophenolate mofetil, short-term methotrexate, and ATG were used. Eighteen (40.9%) of 44 patients with gene variations for which targeted medications are available underwent post-transplant maintenance therapy. Results: The median age was 25 years old (range: 7-55). The median interval between the first and second HSCT was 19.5 months (range: 6-77). Before the second allo-HSCT, 33 (75%) of the patients were in complete remission (CR), whereas 11 (25%) were not. All patients had long-term engraftment. The grade Ⅱ-Ⅳ GVHD and severe acute GVHD rates were 20.5% and 9.1%, respectively. Chronic GVHD was found in 20.5% of limited patterns and 22.7% of severe patterns. CMV and EBV reactivation rates were 29.5% and 6.8%, respectively. Hemorrhage cystitis occurred in 15.9% of cases, grade Ⅰ or Ⅱ. The 1-yr disease-free survival (DFS), overall survival (OS), and cumulative recurrence incidence (RI) rates of all patients were 72.5% (95% CI, 54.5%-84.3%), 80.6% (95% CI, 63.4%-90.3%), and 25.1% (95% CI, 13.7%-43.2%), respectively, with a median follow-up of 14 (2-39) months. There were eight deaths (seven relapses and one infection). The rate of non-relapse mortality (NRM) was only 2.3%. The CR patients' 1-yr RI rate was significantly lower than the NR patients (16.8% vs 48.1%, P=0.026). The DFS rate in CR patients was greater than in NR patients, although there was no statistical difference (79.9% vs 51.9%, P=0.072). Univariate analysis revealed that CR before the second allo-HSCT was an important prognostic factor. Conclusion: With our RIC regimens, donor change, and post-transplant maintenance therapy, the second allo-HSCT in relapsed hematological malignancies after the first allo-HSCT is a safe and effective treatment with high OS and DFS and low NRM and relapse rate. The most important factor influencing the prognosis of the second allo-HSCT is the patient's illness condition before the transplant.
Humans
;
Adult
;
Retrospective Studies
;
Neoplasm Recurrence, Local
;
Hematologic Neoplasms/therapy*
;
Busulfan/therapeutic use*
;
Graft vs Host Disease/prevention & control*
;
Chronic Disease
;
Unrelated Donors
;
Hematopoietic Stem Cell Transplantation
;
Transplantation, Homologous
;
Transplantation Conditioning

Result Analysis
Print
Save
E-mail