1.Expression of influenza B virus hemagglutinin and its immunogenicity determination.
Chen YANG ; Xiaoyu GENG ; Kai YUAN ; Juankun ZHANG ; Haixia XIAO
Chinese Journal of Biotechnology 2022;38(3):1112-1123
Influenza B virus is one of the causes for seasonal influenza, which can account for serious illness or even death in some cases. We tested the expression of extracellular domain of hemagglutinin (HA-ecto) of influenza B viruses in mammalian cells, and then determined the immunogenicity of HA-ecto in mice. The gene sequence encoding influenza B virus HA-ecto, foldon sequence, and HIS tag was optimized and inserted into pCAGGS vector. The opening reading frame (ORF) of neuraminidase was also cloned into pCAGGS. The pCAGGS-HA-ecto and pCAGGS-NA were co-transfected into 293T cells using linear polyethylenimine. Cell supernatant after transfection was collected after 96 h, and the secreted trimmeric HA-ecto protein was purified by nickel ion affinity chromatography and size exclusion chromatography. Subsequently, the mice were immunized with HA-ecto protein, and the corresponding antibody titers were detected by ELISA and hemagglutination inhibition (HAI) assays. The results showed that soluble trimeric HA-ecto protein could be obtained using mammalian cell expression system. Moreover, trimeric HA-ecto protein, in combination with the adjuvant, induced high levels of ELISA and HAI antibodies against homogenous and heterologous antigens in mice. Thus, the soluble HA-ecto protein expressed in mammalian cells could be used as a recombinant subunit vaccine candidate for influenza B virus.
Animals
;
Hemagglutinin Glycoproteins, Influenza Virus/genetics*
;
Hemagglutinins/genetics*
;
Influenza B virus/metabolism*
;
Influenza Vaccines/genetics*
;
Mammals/metabolism*
;
Mice
;
Mice, Inbred BALB C
2.Analysis of HA and NA Genes of Influenza A H1N1 Virus in Yunnan Province during 2009-2014.
Juan LI ; Xiaonan ZHAO ; Yihui CAO ; Deming NING ; Xiaoqing FU ; Wen XU
Chinese Journal of Virology 2015;31(6):674-678
To analyze influenza pathogen spectrum in Yunnan province during 2009-2014 years, and analyze HA and NA genes of influenza A H1N1. Analysis was made on the monitoring date of influenza cases in Yunnan province in recent 6 years, 23 strains of influenza virus of HA and NA gene was sequenced and analyzed by MEGA 5 software to construct phylogenetic tree. 4 times of influenza AH1N1 epidemic peak were monitored from 2009-2014 years in Yunnan Province, as the nucleic acid detection results of influenza A H1N1 accounted for 28.8% of the total. The sequencing result showed that HA and NA gene were divided into 3 groups, one was detected with H275Y mutation strains. Influenza A H1N1 is one of the important subtypes in Yunnan province and their genes have divided into three branches during the period of 2009-2014 years, the vast majority of influenza a H1N1 are still sensitive to neuraminidase inhibitors.
China
;
epidemiology
;
Hemagglutinin Glycoproteins, Influenza Virus
;
genetics
;
metabolism
;
Humans
;
Influenza A Virus, H1N1 Subtype
;
classification
;
enzymology
;
genetics
;
isolation & purification
;
Influenza, Human
;
epidemiology
;
virology
;
Molecular Sequence Data
;
Mutation
;
Neuraminidase
;
genetics
;
metabolism
;
Phylogeny
;
Viral Proteins
;
genetics
;
metabolism
3.Expression of Chimeric Influenza Hemagglutinin Antigen (cH7/3) using the Baculovirus Expression System and Identification of its Biological Activities.
Donghong WANG ; Kun QIN ; Jinlei GUO ; Xiaopeng ZHAO ; Shuai LU ; Yuelong SHU ; Jianfang ZHOU
Chinese Journal of Virology 2015;31(5):524-529
Hemagglutinin (HA) contains a head domain with a high degree of variability and a relatively conserved stem region. HA is the major viral antigen on the surface of the influenza virus. To define the biologic activities of chimeric HA bearing different head domains and stem regions or their potential use, a HA chimeric gene containing the head domain of the H7 subtype virus and stem region of the H3 subtype virus was modified and expressed using a baculovirus expression vector. Then, the secreted protein was purified and its biologic activities characterized. Approximately 1.4 mg/mL cH7/3 HA could be obtained, and its molecular weight was ≈ 70 kD. The trimer form of cH7/3 protein had hemagglutination activity and could be recognized by specific antibodies. The method described here can be used for further studies on the screening of HA stem-reactive antibodies or the development of vaccines with conserved epitopes.
Antibodies, Viral
;
immunology
;
Baculoviridae
;
genetics
;
metabolism
;
Gene Expression
;
Genetic Vectors
;
genetics
;
metabolism
;
Hemagglutination
;
Hemagglutinin Glycoproteins, Influenza Virus
;
genetics
;
immunology
;
Humans
;
Influenza Vaccines
;
genetics
;
immunology
;
Influenza, Human
;
prevention & control
;
virology
4.Isolation and phylogenetic analysis of hemagglutinin gene of H9N2 influenza viruses from chickens in South China from 2012 to 2013.
Han Qin SHEN ; Zhuan Qiang YAN ; Fan Gui ZENG ; Chang Tao LIAO ; Qing Feng ZHOU ; Jian Ping QIN ; Qing Mei XIE ; Ying Zuo BI ; Feng CHEN
Journal of Veterinary Science 2015;16(3):317-324
As part of our ongoing influenza surveillance program in South China, 19 field strains of H9N2 subtype avian influenza viruses (AIVs) were isolated from dead or diseased chicken flocks in Guangdong province, South China, between 2012 and 2013. Hemagglutinin (HA) genes of these strains were sequenced and analyzed and phylogenic analysis showed that 12 of the 19 isolates belonged to the lineage h9.4.2.5, while the other seven belonged to h9.4.2.6. Specifically, we found that all of the viruses isolated in 2013 belonged to lineage h9.4.2.5. The lineage h9.4.2.5 viruses contained a PSRSSRdownward arrowGLF motif at HA cleavage site, while the lineage h9.4.2.6 viruses contained a PARSSRdownward arrowGLF at the same position. Most of the isolates in lineage h9.4.2.5 lost one potential glycosylation site at residues 200-202, and had an additional one at residues 295-297 in HA1. Notably, 19 isolates had an amino acid exchange (Q226L) in the receptor binding site, which indicated that the viruses had potential affinity of binding to human like receptor. The present study shows the importance of continuing surveillance of new H9N2 strains to better prepare for the next epidemic or pandemic outbreak of H9N2 AIV infections in chicken flocks.
Animals
;
*Chickens
;
China
;
Hemagglutinin Glycoproteins, Influenza Virus/chemistry/*genetics/metabolism
;
Influenza A Virus, H9N2 Subtype/*genetics/metabolism
;
Influenza in Birds/virology
;
Phylogeny
;
Poultry Diseases/*virology
;
Sequence Analysis, RNA/veterinary
5.H5N1 Avian Influenza Pre-pandemic Vaccine Strains in China.
Hong BO ; Li Bo DONG ; Ye ZHANG ; Jie DONG ; Shu Mei ZOU ; Rong Bao GAO ; Da Yan WANG ; Yue Long SHU ;
Biomedical and Environmental Sciences 2014;27(10):763-769
OBJECTIVETo prepare the 4 candidate vaccine strains of H5N1 avian influenza virus isolated in China.
METHODSRecombinant viruses were rescued using reverse genetics. Neuraminidase (NA) and hemagglutinin (HA) segments of the A/Xinjiang/1/2006, A/Guangxi/1/2009, A/Hubei/1/2010, and A/Guangdong/1/2011 viruses were amplified by RT-PCR. Multibasic amino acid cleavage site of HA was removed and ligated into the pCIpolI vector for virus rescue. The recombinant viruses were evaluated by trypsin dependent assays. Their embryonate survival and antigenicity were compared with those of the respective wild-type viruses.
RESULTSThe 4 recombinant viruses showed similar antigenicity compared with wild-type viruses, chicken embryo survival and trypsin-dependent characteristics.
CONCLUSIONThe 4 recombinant viruses rescued using reverse genetics meet the criteria for classification of low pathogenic avian influenza strains, thus supporting the use of them for the development of seeds and production of pre-pandemic vaccines.
Animals ; Chick Embryo ; Chickens ; China ; Hemagglutinin Glycoproteins, Influenza Virus ; genetics ; metabolism ; Influenza A Virus, H5N1 Subtype ; immunology ; Influenza Vaccines ; immunology ; Influenza in Birds ; prevention & control ; virology ; Neuraminidase ; genetics ; metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Vaccines, Synthetic ; immunology
6.Construction and biological characteristics of H5N1 avian influenza viruses with different patterns of the glycosylation sites in HA protein.
Xiao-jian ZHANG ; Yan-fang LI ; Li-ping XIONG ; Su-juan CHEN ; Da-xin PENG ; Xiu-fan LIU
Chinese Journal of Virology 2013;29(5):495-499
The distribution of glycosylation sites in HA proteins was various among H5 subtype avian influenza viruses (AIVs), however, the role of glycosylation sites to the virus is still unclear. In this study, avian influenza H5N1 viruses with deletion of the glycosylation sites in HA were constructed and rescued by site direct mutation and reverse genetic method, and their biological characteristics and virulence were determined. The result showed that the mutants were confirmed to be corrected by HA gene sequencing and Western blot analysis. The EID50 and TCID50 tested in SPF chick embryo and MDCK cells of a mutant rSdelta158 with deletion of glycosylation site at position 158 were slight lower than that of wild type rescued virus rS, and the plaque diameter of rSdelta158 was significant smaller than that of rS. The EID50 and TCID50 of mutants rSdelta169 and rSdelta290 with deletion of glycosylation sites at position 169 and 290, respectively, were slight higher than that of wild type rescued virus rS, the plaque diameters of rSdelta169 and rSdelta290 were similar as that of rS, but the plaque numbers of rSdelta169 and rSdelta290 were 10-fold higher than that to rS. On the other hand, the rSdelta158, rSdelta169 and rSdelta290 showed similar growth rate in chicken embryo fibroblast as rS. All viruses remained high pathogenicity to SPF chickens. Therefore, the growth of AIV can be affected by changes of glycosylation sites in HA protein, by which the effect is variable in different cells.
Amino Acid Motifs
;
Animals
;
Cell Line
;
Chick Embryo
;
Chickens
;
Glycosylation
;
Hemagglutinin Glycoproteins, Influenza Virus
;
chemistry
;
genetics
;
metabolism
;
Influenza A Virus, H5N1 Subtype
;
chemistry
;
genetics
;
growth & development
;
metabolism
;
Influenza in Birds
;
virology
;
Poultry Diseases
;
virology
7.Structure and receptor-binding properties of an airborne transmissible avian influenza A virus hemagglutinin H5 (VN1203mut).
Xishan LU ; Yi SHI ; Wei ZHANG ; Yanfang ZHANG ; Jianxun QI ; George F GAO
Protein & Cell 2013;4(7):502-511
Avian influenza A virus continues to pose a global threat with occasional H5N1 human infections, which is emphasized by a recent severe human infection caused by avian-origin H7N9 in China. Luckily these viruses do not transmit efficiently in human populations. With a few amino acid substitutions of the hemagglutinin H5 protein in the laboratory, two H5 mutants have been shown to obtain an air-borne transmission in a mammalian ferret model. Here in this study one of the mutant H5 proteins developed by Kawaoka's group (VN1203mut) was expressed in a baculovirus system and its receptor-binding properties were assessed. We herein show that the VN1203mut had a dramatically reduced binding affinity for the avian α2,3-linkage receptor compared to wild type but showed no detectable increase in affinity for the human α2,6-linkage receptor, using Surface Plasmon Resonance techonology. Further, the crystal structures of the VN1203mut and its complexes with either human or avian receptors demonstrate that the VN1203mut binds the human receptor in the same binding manner (cis conformation) as seen for the HAs of previously reported 1957 and 1968 pandemic influenza viruses. Our receptor binding and crystallographic data shown here further confirm that the ability to bind the avian receptor has to decrease for a higher human receptor binding affinity. As the Q226L substitution is shown important for obtaining human receptor binding, we suspect that the newly emerged H7N9 binds human receptor as H7 has a Q226L substitution.
Air Microbiology
;
Crystallography, X-Ray
;
Glycosylation
;
Hemagglutinin Glycoproteins, Influenza Virus
;
chemistry
;
genetics
;
metabolism
;
Humans
;
Influenza A Virus, H5N1 Subtype
;
chemistry
;
metabolism
;
Influenza A Virus, H7N9 Subtype
;
chemistry
;
Models, Molecular
;
Mutant Proteins
;
chemistry
;
genetics
;
metabolism
;
Protein Binding
;
Protein Stability
;
Receptors, Cell Surface
;
genetics
;
metabolism
;
Solubility
;
Surface Plasmon Resonance
;
Temperature
8.Construction of recombinant baculovirus co-expressing M1 and HA of influenza A virus.
Peng-Wei XU ; Jian-Qiang GUO ; Li-Hong YAO ; Ai-Jun CHEN ; Xiao-Yu LIU ; Xian-Yin ZENG ; Zhi-Qing ZHANG
Chinese Journal of Virology 2012;28(3):231-236
The M1 and HA genes of H1N1 influenza virus were amplified and then cloned into the pFastBac dual donor plasmid. The recombinant pFastBac Dual-M1-HA was identified by restriction enzyme digestion. After the pFastBacdual-M1-HA was transformed into the baculovirus shuttle plasmid (bacmid) in DH10Bac competent cells, the colonies were identified by antibiotics and blue-white selection. The rBac-mid-M1-HA was verified by PCR and transfected into S f9 cells to produce recombinant baculovirus (rBac-M1-HA). Gene insertion of rBac-M1-HA was verified and the expression of M1 and HA genes was analyzed by IFA and Western-blot, demonstrating M1 and HA were co-expressed successfully. This study provides the foundation for researching the formation mechanism of influenza VLP and developing new influenza vaccines.
Animals
;
Baculoviridae
;
genetics
;
metabolism
;
Cell Line
;
Cloning, Molecular
;
Gene Expression
;
Genetic Vectors
;
genetics
;
metabolism
;
Hemagglutinin Glycoproteins, Influenza Virus
;
genetics
;
immunology
;
Influenza A Virus, H1N1 Subtype
;
genetics
;
immunology
;
Spodoptera
;
Transfection
;
Viral Matrix Proteins
;
genetics
;
immunology
9.Advances in the structure and function of pandemic A/H1N1/2009 influenza virus HA protein.
Wen-Qiang ZHANG ; Shao-Xia SONG ; Tong-Zhan WANG
Chinese Journal of Virology 2012;28(4):444-452
Since March 2009, pandemic A/H1N1/2009 influenza virus has been spreading throughout many countries including China. The emerged virus caused great harm to human health and social economy. Hemagglutinin (HA) is the most important viral surface glycoprotein, mainly possessing three kinds of functions: (1) binding to host cell receptor, (2) triggering the fusion between viral envelop and target cell membrane, (3) stimulating the body to generate the neutralizing antibody. Advances in the structure, primary function, evolution and antigenicity of pandemic A/H1N1/2009 influenza virus HA protein are reviewed in this paper.
Animals
;
Evolution, Molecular
;
Hemagglutinin Glycoproteins, Influenza Virus
;
chemistry
;
genetics
;
immunology
;
metabolism
;
Humans
;
Influenza A Virus, H1N1 Subtype
;
genetics
;
immunology
;
pathogenicity
;
physiology
;
Influenza, Human
;
epidemiology
;
virology
;
Pandemics
10.Mechanism underlying the anterograde transport of the influenza A virus transmembrane proteins and genome in host cytoplasm.
Xiaojuan CHI ; Song WANG ; Yifan HUANG ; Jilong CHEN
Chinese Journal of Biotechnology 2012;28(9):1021-1030
Influenza virus assembly requires the completion of viral protein and vRNP transport to the assembly site at the plasma membrane. Therefore, efficient regulation of intracellular transport of the viral proteins and vRNPs to the surface of the host cell is especially important for virus morphogenesis. Influenza A virus uses the machineries of host cells to transport its own components including ribonucleoproteins (vRNPs) and three transmembrane proteins hemagglutinin (HA), neuraminidase (NA) and matrix 2 protein (M2). It has been shown that newly synthesized vRNPs are associated with active form of Rab11 and accumulate at recycling endosomes adjacent to the microtubule organizing center (MTOC) following nuclear export. Subsequently, they are transported along the microtubule network toward the plasma membranes in cargo vesicles. The viral transmembrane proteins are translated on the rough endoplasmic reticulum and transported to the virus assembly site at the plasma membrane. It has been found that several host factors such as ARHGAP21 and GTPase Cdc42 are involved in regulation of intracellular trafficking of influenza A virus transmembrane proteins including NA. In this review, we will highlight the current knowledge about anterograde transport and its regulation of the influenza A virus transmembrane proteins and genome in the host cytoplasm.
Cytoplasm
;
metabolism
;
GTP Phosphohydrolases
;
metabolism
;
GTPase-Activating Proteins
;
metabolism
;
Genome, Viral
;
Hemagglutinin Glycoproteins, Influenza Virus
;
metabolism
;
Humans
;
Influenza A virus
;
genetics
;
pathogenicity
;
physiology
;
Neuraminidase
;
metabolism
;
Protein Transport
;
Ribonucleoproteins
;
metabolism
;
Viral Matrix Proteins
;
metabolism
;
cdc42 GTP-Binding Protein
;
metabolism

Result Analysis
Print
Save
E-mail