1.Pentoxifylline inhibits liver fibrosis via hedgehog signaling pathway.
Hui LI ; Juan HUA ; Chun-Xia GUO ; Wei-Xian WANG ; Bao-Ju WANG ; Dong-Liang YANG ; Ping WEI ; Yin-Ping LU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(3):372-376
Infection of schistosomiasis japonica may eventually lead to liver fibrosis, and no effective antifibrotic therapies are available but liver transplantation. Hedgehog (HH) signaling pathway has been involved in the process and is a promising target for treating liver fibrosis. This study aimed to explore the effects of pentoxifylline (PTX) on liver fibrosis induced by schistosoma japonicum infection by inhibiting the HH signaling pathway. Phorbol12-myristate13-acetate (PMA) was used to induce human acute mononuclear leukemia cells THP-1 to differentiate into macrophages. The THP-1-derived macrophages were stimulated by soluble egg antigen (SEA), and the culture supernatants were collected for detection of activation of macrophages. Cell Counting Kit-8 (CCK-8) was used to detect the cytotoxicity of the culture supernatant and PTX on the LX-2 cells. The LX-2 cells were administered with activated culture supernatant from macrophages and(or) PTX to detect the transforming growth factor-β gene expression. The mRNA expression of shh and gli-1, key parts in HH signaling pathway, was detected. The mRNA expression of shh and gli-1 was increased in LX-2 cells treated with activated macrophages-derived culture supernatant, suggesting HH signaling pathway may play a key role in the activation process of hepatic stellate cells (HSCs). The expression of these genes decreased in LX-2 cells co-cultured with both activated macrophages-derived culture supernatant and PTX, indicating PTX could suppress the activation process of HSCs. In conclusion, these data provide evidence that PTX prevents liver fibrogenesis in vitro by the suppression of HH signaling pathway.
Animals
;
Antigens, Helminth
;
isolation & purification
;
pharmacology
;
Cell Culture Techniques
;
Cell Differentiation
;
drug effects
;
Cell Line
;
Culture Media, Conditioned
;
chemistry
;
pharmacology
;
Gene Expression Regulation
;
Hedgehog Proteins
;
agonists
;
antagonists & inhibitors
;
genetics
;
immunology
;
Hepatic Stellate Cells
;
cytology
;
drug effects
;
metabolism
;
Humans
;
Liver Cirrhosis
;
metabolism
;
parasitology
;
prevention & control
;
Macrophage Activation
;
drug effects
;
Macrophages
;
cytology
;
drug effects
;
immunology
;
Models, Biological
;
Monocytes
;
cytology
;
drug effects
;
metabolism
;
Pentoxifylline
;
pharmacology
;
Phosphodiesterase Inhibitors
;
pharmacology
;
RNA, Messenger
;
genetics
;
immunology
;
Schistosoma japonicum
;
chemistry
;
Signal Transduction
;
Tetradecanoylphorbol Acetate
;
pharmacology
;
Zinc Finger Protein GLI1
;
genetics
;
immunology
;
Zygote
;
chemistry
2.Cloning, eukaryotic expressing and function analysis of Schistosoma japonicum apoptosis gene Sjcaspase3.
Tao WANG ; Yang HONG ; Hongxiao HAN ; Chao LV ; Bingguang JIA ; Xiaodan CAO ; Qian HAN ; Ke LU ; Hao LI ; Zhiqiang FU ; Jiaojiao LIN
Chinese Journal of Biotechnology 2016;32(7):889-900
For further research of the apoptosis mechanism of Schistosoma japonicum (S. japonicum). The cDNA encoding Sjcaspase3 of Schistosoma japonicum was amplified by polymerase chain reaction (PCR) technique, which contained 900 nucleotides and encoded 299 amino acids. The theory molecular weight and isoelectric point (PI) of the deduced protein is 33.5 kDa and 6.39, respectively. Real-time PCR was used to analyze the transcription profiles of Sjcaspase3 at different development stages of S. japonicum. The results showed that this gene was expressed in all stages of S. japonicum with the highest expression in 21d worms, and the level of gene transcription in 42 d female worms was higher than that of male worms. The recombinant plasmid pXJ40-FLAG-Sjcaspase3 was constructed and transfection into Hela cells successfully. Real-time PCR and Western blotting analysis showed Sjcaspase3 was successfully expressed in Hela cells. Enzyme activity analysis revealed that recombinant Sjcaspase3 possessed the activity to cut substrate DEVD. Flow cytometry proved that Sjcaspase3 could induce early apoptosis of Hela cells. The results provide the basis for proceeding further study on the biological function of Sjcaspase3 and better understand the apoptosis mechanism of S. japonicum.
Animals
;
Apoptosis
;
Blotting, Western
;
Caspase 3
;
genetics
;
metabolism
;
Cloning, Molecular
;
DNA, Complementary
;
Female
;
HeLa Cells
;
Helminth Proteins
;
genetics
;
metabolism
;
Humans
;
Male
;
Real-Time Polymerase Chain Reaction
;
Recombinant Proteins
;
Schistosoma japonicum
3.First Report of Echinococcus equinus in a Donkey in Turkey.
Sami SIMSEK ; Erifylli ROINIOTI ; Hatice EROKSUZ
The Korean Journal of Parasitology 2015;53(6):731-735
A 2-year-old female donkey (Equus asinus) was euthanized in the Pathology Department of Firat University, Elazig, Turkey. Necropsy disclosed the presence of 7 hydatid cysts distributed throughout the lung parenchyma. One of those cysts represented the parasite material of the present study and was molecularly identified through sequencing of a fragment of cytochrome c oxidase subunit 1 (CO1) and nicotinamide adenine dinucleotide dehydrogenase subunit 1 (NADH1) gene, as Echinococcus equinus. The generated CO1 sequence supports the presence of the dominant haplotype as has been described in Europe and Africa. The NADH1 sequence was found similar to sequences reported in equids in Egypt and the United Kingdom. The molecular identification of E. equinus in a donkey is being reported for the first time in Turkey.
Animals
;
Echinococcosis/parasitology/*veterinary
;
Echinococcus/classification/genetics/*isolation & purification
;
Equidae/*parasitology
;
Female
;
Helminth Proteins/genetics/metabolism
;
Molecular Sequence Data
;
Phylogeny
;
Turkey
4.Cloning, expression and protective efficacy evaluation of radiation sensitive protein 23 (RAD23) from Schistosoma japonicum.
Changjian LI ; Min ZHANG ; Yang HONG ; Yanhui HAN ; Xiaodan CAO ; Hongxiao HAN ; Zhiqiang FU ; Chuangang ZHU ; Ke LU ; Hao LI ; Jiaojiao LIN
Chinese Journal of Biotechnology 2014;30(11):1669-1678
Radiation sensitive protein 23 (RAD23) is a nucleotide excision repair (NER) protein that plays an important role in Ubiquitin-proteasome pathway (UPP). Schistosoma japonicum radiation sensitive protein23 (SjRAD23) cDNA sequences were amplified by PCR and cloned into pET28a (+) vector to construct recombinant expression plasmid pET28a(+)-SjRAD23. The recombinant protein was expressed as both inclusion bodies and the supernatant in Escherichia coli BL21 (DE3) cell. Immunofluorescence observation shows that SjRAD23 was mainly distributed on the tegument surface of the worms. ELISA assay reveals that specific IgG, IgG1 and IgG2a antibodies could be detected in the sera of rSjRAD23 immunized mice. Western blotting analysis shows that the recombinant SjRAD23 could be recognized by serum specific to soluble adult worm antigen of S. japonicum. BALB/c mice vaccinated with rSjRAD23 combined with 206 adjuvant revealed 35.94% worm reduction and 40.59% liver egg reduction when compared with that of the adjuvant control
Animals
;
Antibodies, Helminth
;
blood
;
Blotting, Western
;
Cloning, Molecular
;
DNA Repair Enzymes
;
genetics
;
metabolism
;
DNA, Complementary
;
Enzyme-Linked Immunosorbent Assay
;
Escherichia coli
;
Genetic Vectors
;
Helminth Proteins
;
genetics
;
immunology
;
Immunoglobulin G
;
blood
;
Mice
;
Mice, Inbred BALB C
;
Recombinant Proteins
;
genetics
;
immunology
;
Schistosoma japonicum
;
genetics
;
metabolism
;
Schistosomiasis japonica
;
prevention & control
;
Vaccines
;
immunology
5.Characterization and immunoprotective effect of SjIrV1, a 66 kDa calcium-binding protein from Schistosoma japonicum.
Meimei WEI ; Yanian XIONG ; Yang HONG ; Lini HUANG ; Peipei MENG ; Dezhou AI ; Min ZHANG ; Zhiqiang FU ; Shengfa LIU ; Jiaojiao LIN
Chinese Journal of Biotechnology 2013;29(7):891-903
Calcium-binding protein is an indispensable protein which performs extensive and important functions in the growth of Schistosoma japonicum. Based on our primary study on tegument surface proteins of S. japonicun, a cDNA encoding a 66 kDa calcium-binding protein of S. japonicum (Chinese strain) was cloned, sequence analysis revealed that it was identical with that of SjIrV1 of Philippines strains S. japonicum. The expression of SjIrV1 were detected by Real-time PCR, using cDNA templates isolated from 7, 14, 21, 28, 35 and 42 days worms and the results revealed that the gene was expressed in all investigated stages, and the mRNA level of SjIrV1 is much higher in 42 d female worms than that in 42 d male worms. The cDNA containing the open reading frame of IrV1 was subcloned into a pET28a (+) vector and transformed into competent Escherichia coli BL21 for expression. The recombinant protein was purified using a Ni-NTA purification system, and confirmed by high performance liquid chromatography (RP-HPLC) and tandem mass spectrometry (MS/MS). Western blotting analysis showed that recombinant SjIrV1 (rSjIrV1) could be recognized by the S. japonicum infected mouse serum and the mouse serum specific to rSjIrV1, respectively. Immunofluorescence observation exhibited that SjIrV1 was mainly distributed on the tegument of the 35-day adult worms. ELISA test revealed that IgG, IgG1 and IgG2a antibodies are significantly increased in the serum of rSjIrV1 vaccinated mice. The study suggested that rSjIrV1 might play an important role in the development of S. japonicum.
Animals
;
Antibodies, Helminth
;
blood
;
Calcium-Binding Proteins
;
genetics
;
metabolism
;
Cloning, Molecular
;
Escherichia coli
;
metabolism
;
Female
;
Genetic Vectors
;
Helminth Proteins
;
genetics
;
metabolism
;
Male
;
Mice
;
Recombinant Proteins
;
genetics
;
metabolism
;
Schistosoma japonicum
;
genetics
;
metabolism
6.Genetic variation of the 8-kDa glycoprotein family from Echinococcus granulosus, Taenia multiceps and Taenia hydatigena.
Wan-Zhong JIA ; Hong-Bin YAN ; Zhong-Zi LOU ; Xing-Wei NI ; Hong-Xia LIU ; Hong-Min LI ; Ai-Jiang GUO ; Bao-Quan FU
Chinese Medical Journal 2011;124(18):2849-2856
BACKGROUNDEchinococcosis, coenurosis and cysticercosis are debilitating diseases which prevail in China. Immunological diagnosis of metacestodosis is important in disease control. The 8-kDa glycoproteins from taeniid cestodes have successfully been used for diagnosis of human cysticercosis in immunological assays. The aim of the present study was to investigate genetic variations and phylogenetic relationships of the 8-kDa proteins for evaluating the possibility of utilizing these proteins as diagnostic antigens for other metacestode infections.
METHODSThe genes and complementary DNAs (cDNAs) encoding the 8-kDa proteins from Echinococcus (E.) granulosus, Taenia (T.) multiceps and T. hydatigena were amplified using PCR method. Their amplicons were cloned into the vector pMD18 and the positive clones were sequenced. Sequence data were analyzed with the SeqMan program, and sequence homology searches were performed using the BLAST program. Alignments were conducted using the ClustalX program, and the phylogenetic analyses were performed with the Protein Sequences Program and the Puzzle Program using the Neighbor-joining method.
RESULTSFifteen, 18 and 22 different genomic DNA sequences were identified as members of the 8-kDa protein gene family from E. granulosus, T. multiceps and T. hydatigena, respectively. Eight, four and six different cDNA clones respectively from E. granulosus, T. multiceps and T. hydatigena were characterized. Analysis of these sequences revealed 54 unique 8-kDa protein sequences. Phylogenetic trees demonstrated that the taeniid 8-kDa proteins are clustered into eight clades at least: Ts18, Ts14, TsRS1, TsRS2, T8kDa-1, T8kDa-2, T8kDa-3 and T8kDa-4.
CONCLUSIONWe found that the gene family encoding for the taeniid 8-kDa antigens is comprised of many members with high diversity, which will provide molecular evidence for cross-reaction or specific reaction among metacestode infections and may contribute to the development of promising immunological methods for diagnosis of metacestodosis.
Amino Acid Sequence ; Animals ; DNA, Helminth ; genetics ; Echinococcus granulosus ; genetics ; metabolism ; Genetic Variation ; genetics ; Glycoproteins ; chemistry ; classification ; genetics ; Helminth Proteins ; chemistry ; classification ; genetics ; Molecular Sequence Data ; Phylogeny ; Sequence Homology, Amino Acid ; Taenia ; genetics ; metabolism
7.Molecular characterization of a signal-regulated kinase homolog from Echinococcus granulosus.
Jing LI ; Chuan-Shan ZHANG ; Guo-Dong LÜ ; Jun-Hua WANG ; Hao WEN ; Gen-Qiang YAN ; Xu-Fa WEI ; Ren-Yong LIN
Chinese Medical Journal 2011;124(18):2838-2844
BACKGROUNDCystic echinococcosis due to Echinococcus granulosus (E. granulosus) is one of the most important chronic helminthic diseases, especially in sheep/cattle-raising regions. The larval stage of the parasite forms a cyst that grows in the liver, lung, or other organs of the host. To ensure a long life in the host tissues, the parasite establishes complex inter-cellular communication systems between its host to allow its differentiation toward each larval stage. Recent studies have reported that this communication is associated with the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase cascade in helminth parasites, and in particular that these protein kinases might serve as effective targets for a novel chemotherapy for cystic echinococcosis. The aim of the present study investigated the biological function of a novel ERK ortholog from E. granulosus, EgERK.
METHODSDNA encoding EgERK was isolated from protoscolices of E. granulosus and analyzed using the LA Taq polymerase chain reaction (PCR) approach and bioinformatics. Reverse transcription PCR (RT-PCR) was used to determine the transcription level of the gene at two different larval tissues. Western blotting was used to detect levels of EgERK protein. The expression profile of EgERK in protoscolices was examined by immunofluorescence.
RESULTSWe cloned the entire Egerk genomic locus from E. granulosus. In addition, two alternatively spliced transcripts of Egerk, Egerk-A, and Egerk-B were identified. Egerk-A was found to constitutively expressed at the transcriptional and protein levels in two different larval tissues (cyst membranes and protoscolices). Egerk-A was expressed in the tegumental structures, hooklets, and suckers and in the tissue surrounding the rostellum of E. granulosus protoscolices.
CONCLUSIONSWe have cloned the genomic DNA of a novel ERK ortholog from E. granulosus, EgERK (GenBank ID HQ585923), and found that it is constitutively expressed in cyst membrane and protoscolex. These findings will be useful in further study of the biological functions of the gene in the growth and development of Echinococcus and will contribute to research on novel anti-echinococcosis drug targets.
Animals ; Blotting, Western ; Computational Biology ; DNA, Helminth ; genetics ; Echinococcus granulosus ; enzymology ; genetics ; Genome, Helminth ; genetics ; Helminth Proteins ; genetics ; metabolism ; Polymerase Chain Reaction
8.Cloning and expressing of cyclophilin B gene from Schistosoma japonnicum and the analysis of immunoprotective effect.
Jinbiao PENG ; Hongxiao HAN ; Yang HONG ; Yan WANG ; Fanji GUO ; Yaojun SHI ; Zhiqiang FU ; Jinming LIU ; Guofeng CHENG ; Jiaojiao LIN
Chinese Journal of Biotechnology 2010;26(3):317-323
The present study was intend to clone and express the cDNA encoding Cyclophilin B (CyPB) of Schistosoma japonicum, its preliminary biological function and further immunoprotective effect against schistosome infection in mice. RT-PCR technique was applied to amplify a full-length cDNA encoding protein Cyclophilin B (Sj CyPB) from schistosomula cDNA. The expression profiles of Sj CyPB were determined by Real-time PCR using the template cDNAs isolated from 7, 13, 18, 23, 32 and 42 days parasites. The cDNA containing the Open Reading Frame of CyPB was then subcloned into a pGEX-6P-1 vector and transformed into competent Escherichia coli BL21 for expressing. The recombinant protein was renaturated, purified and its antigenicity were detected by Western blotting, and the immunoprotective effect induced by recombinant Sj CyPB was evaluated in Balb/C mice. The cDNA containing the ORF of Sj CyPB was cloned with the length of 672 base pairs, encoding 223 amino acids. Real-time PCR analysis revealed that the gene had the highest expression in 18-day schistosomula, suggesting that Sj CyPB was schistosomula differentially expressed gene. The recombinant protein showed a good antigenicity detected by Western blotting. Animal experiment indicated that the vaccination of recombinant CyPB protein in mice led to 31.5% worm and 41.01% liver egg burden reduction, respectively, compared with those of the control. A full-length cDNA differentially expressed in schistosomula was obtained. The recombinant Sj CyPB protein could induce partial protection against schistosome infection.
Animals
;
Antigens, Helminth
;
immunology
;
Cloning, Molecular
;
Cyclophilins
;
biosynthesis
;
genetics
;
immunology
;
DNA, Complementary
;
genetics
;
Escherichia coli
;
genetics
;
metabolism
;
Genetic Vectors
;
genetics
;
Immunization
;
Mice
;
Mice, Inbred BALB C
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
immunology
;
Schistosoma japonicum
;
genetics
;
immunology
;
Schistosomiasis japonica
;
prevention & control
;
Vaccines, Synthetic
;
biosynthesis
;
immunology
9.Cloning, expression and characterization of a gene encoding alpha2 subunit of the proteasome in Schistosoma japonicum.
Yang HONG ; Hongxiao HAN ; Jinbiao PENG ; Ye LI ; Yaojun SHI ; Zhiqiang FU ; Jinming LIU ; Xiangrui LI ; Jiaojiao LIN
Chinese Journal of Biotechnology 2010;26(4):509-516
The 26S proteasome is a proteolytic complex responsible for the degradation of the vast majority of eukaryotic proteins. Regulated proteolysis by the proteasome is thought to influence cell cycle progression, transcriptional control, and other critical cellular processes. A novel Schistosoma japonicum gene (GenBank Accession No. AY813725) proteasome alpha2 subunit (SjPSMA2) was cloned. Sequence analysis revealed that the ORF of SjPSMA2 gene contains 708 nucleotides encoding 235 amino acids, and the molecular weight was estimated to be 25.84 kDa. Real-time PCR analysis showed that this gene expressed in 7 d, 13 d, 18 d, 23 d, 32 d and 42 d schistosoma. The mRNA level of SjPSMA2 was lower in 7 d and 23 d schistosomulum than that in other stages. The SjPSMA2 cDNA fragment was subcloned into an expression vector pET28a(+) and transformed into E. coli BL21 (DE3) cells. After induction with IPTCQ the 30 kDa fusion protein was produced as included bodies. Western-blotting revealed that the fusion protein could be recognized by the rabbit serum anti-Schistosoma japonicum adult worm antigen preparation, and the protein in native could be detected. After immunization of BALB/c mice with the fusion protein, the reduction rates of worm counts and liver egg counts were 12.33% and 35.23%. ELISA results revealed that the vaccinated group showed a significant increase in the level of IgG antibody. This study provided an important basis for investigating the regulation mechanism of the proteasome during the development of Schistosoma japonicum.
Animals
;
Antibodies, Helminth
;
blood
;
Base Sequence
;
Cloning, Molecular
;
Escherichia coli
;
genetics
;
metabolism
;
Genes, Helminth
;
Helminth Proteins
;
genetics
;
metabolism
;
Immunization
;
Liver
;
parasitology
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Molecular Sequence Data
;
Parasite Egg Count
;
Proteasome Endopeptidase Complex
;
biosynthesis
;
genetics
;
immunology
;
Rabbits
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
immunology
;
Schistosoma japonicum
;
genetics
;
metabolism
;
Vaccines, Synthetic
;
immunology
10.Cloning and efficient prokaryotic expression of soluble stage-specific antigen cC1 from Cysticercus cellulosae.
Qiang FANG ; Jiang-kun LUO ; Zhuo CUI ; Wen-juan QI ; Yuan-sheng HU ; Ji-long SHEN
Journal of Southern Medical University 2010;30(2):206-209
OBJECTIVETo clone the coding gene of the stage-specific antigen cC1 from Cysticercus cellulosae and express high levels of soluble cC1 in E.coli.
METHODSThe cC1 gene was amplified from Cysticercus cellulosae by RT-PCR and cloned into pMD18-T vector, followed by subcloning into the prokaryotic expression plasmid pET28a. The recombinant plasmid was transformed into E.coli BL21(DE3) and the expression conditions were optimized. The expressed product was purified by Ni(+)-affinity chromatography, analyzed by high-performance liquid chromatography (HPLC), and identified with SDS-PAGE and Western blotting.
RESULTSThe fragment length of the amplification product by RT-PCR was 1056 bp. Comparison of the amplified gene sequence with the cC1 gene in Genbank identified a samesense point mutation at 423 position in the gene cloned into the expression plasmids. After a 6-h induction with 0.05 mmol/L IPTG at 37 degrees celsius;, the expression of the 40 kd soluble fusion protein exceeded 60% of the total bacterial protein, and the fusion protein was recognized by Cysticercus-infected human sera. The purity of the fusion protein was about 94% after purification by affinity chromatography.
CONCLUSIONThe stage-specific antigen cC1 from Cysticercus cellulosae has been successfully cloned and the soluble protein efficiently expressed in E.coli, which provides the basis for its further study and application.
Animals ; Antigens, Helminth ; biosynthesis ; genetics ; immunology ; Cloning, Molecular ; Cysticercus ; immunology ; Escherichia coli ; genetics ; metabolism ; Genetic Vectors ; Humans ; Recombinant Fusion Proteins ; biosynthesis ; genetics ; immunology ; Solubility ; Swine ; Taenia solium ; immunology

Result Analysis
Print
Save
E-mail