1.Antigenicity evaluation of lac color and exploratory study for identifying potential biomarkers of anaphylaxis
Hyun‑Jin LIM ; Kang Min HAN ; Seung‑Hyun KIM ; Soo‑Kyung RYU ; Ji‑Ran YOU ; Jung‑Hee YOON ; Euna KWON ; Ji‑Eun KIM ; Byeong‑Cheol KANG
Laboratory Animal Research 2024;40(4):461-475
		                        		
		                        			 Background:
		                        			Lac color, a natural red dye derived from the larvae of laccifer lacca kerr, is one of the most commonly used substances in food. To date, no studies have reported on the antigenicity of lac color and the other biomarkers that can determine anaphylactic reactions. To address this, we evaluated the antigenicity of lac color through active systemic anaphylaxis (ASA) in addition to identifying potential biomarkers performing exploratory studies. For ASA test, Guinea pigs (n = 5) were sensitized with 0(negative control), 4 mg/kg of lac color, 4 mg/kg of lac color + FCA, and 5 mg/kg of ovalbumin + FCA (positive control) 3 times a week for three weeks. Fourteen days after the last sensi‑ tization, animals were challenged intravenously weekly for two weeks. Hematological and histopathological analyses were performed and compared to control groups. 
		                        		
		                        			Results:
		                        			In the ASA test, all lac color groups showed mild symptoms such as nose rubbing, urination, and evacuation, which are insufficient indicators of anaphylaxis. Exploratory studies identified several biomarkers: decreased platelet count, and increased basophil count; distention in the lung, and redness on the inner wall of trachea; mononuclear inflammatory cell infiltration (MICI) in the ear, and heart hemorrhage. When these biomarkers were applied to the ASA test of lac color, in comparison to the negative control group, the positive control group (ovalbumin + FCA) showed a significant over 60-fold reduction in platelet count and nearly threefold higher basophil count compared to other groups. Furthermore, only positive control group exhibited full lung distention and severe redness on the inner wall of the trachea. Mononuclear inflammatory cell infiltration (MICI) in the ear was about three times higher, and heart hemorrhage was only present in the positive control group compared to others. None of the lac color groups were different from the negative control group (p > 0.05), whereas the positive control group was significantly different (p < 0.05). 
		                        		
		                        			Conclusions
		                        			Our study concludes that lac color, at the tested concentrations, does not induce antigenicity in the guinea pig model, providing valuable safety data. Furthermore, the biomarkers identified in this study offer a supportive approach to evaluating the immunogenicity of substances in future research. 
		                        		
		                        		
		                        		
		                        	
2.Antigenicity evaluation of lac color and exploratory study for identifying potential biomarkers of anaphylaxis
Hyun‑Jin LIM ; Kang Min HAN ; Seung‑Hyun KIM ; Soo‑Kyung RYU ; Ji‑Ran YOU ; Jung‑Hee YOON ; Euna KWON ; Ji‑Eun KIM ; Byeong‑Cheol KANG
Laboratory Animal Research 2024;40(4):461-475
		                        		
		                        			 Background:
		                        			Lac color, a natural red dye derived from the larvae of laccifer lacca kerr, is one of the most commonly used substances in food. To date, no studies have reported on the antigenicity of lac color and the other biomarkers that can determine anaphylactic reactions. To address this, we evaluated the antigenicity of lac color through active systemic anaphylaxis (ASA) in addition to identifying potential biomarkers performing exploratory studies. For ASA test, Guinea pigs (n = 5) were sensitized with 0(negative control), 4 mg/kg of lac color, 4 mg/kg of lac color + FCA, and 5 mg/kg of ovalbumin + FCA (positive control) 3 times a week for three weeks. Fourteen days after the last sensi‑ tization, animals were challenged intravenously weekly for two weeks. Hematological and histopathological analyses were performed and compared to control groups. 
		                        		
		                        			Results:
		                        			In the ASA test, all lac color groups showed mild symptoms such as nose rubbing, urination, and evacuation, which are insufficient indicators of anaphylaxis. Exploratory studies identified several biomarkers: decreased platelet count, and increased basophil count; distention in the lung, and redness on the inner wall of trachea; mononuclear inflammatory cell infiltration (MICI) in the ear, and heart hemorrhage. When these biomarkers were applied to the ASA test of lac color, in comparison to the negative control group, the positive control group (ovalbumin + FCA) showed a significant over 60-fold reduction in platelet count and nearly threefold higher basophil count compared to other groups. Furthermore, only positive control group exhibited full lung distention and severe redness on the inner wall of the trachea. Mononuclear inflammatory cell infiltration (MICI) in the ear was about three times higher, and heart hemorrhage was only present in the positive control group compared to others. None of the lac color groups were different from the negative control group (p > 0.05), whereas the positive control group was significantly different (p < 0.05). 
		                        		
		                        			Conclusions
		                        			Our study concludes that lac color, at the tested concentrations, does not induce antigenicity in the guinea pig model, providing valuable safety data. Furthermore, the biomarkers identified in this study offer a supportive approach to evaluating the immunogenicity of substances in future research. 
		                        		
		                        		
		                        		
		                        	
3.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
		                        		
		                        			
		                        			 Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association. 
		                        		
		                        		
		                        		
		                        	
4.Antigenicity evaluation of lac color and exploratory study for identifying potential biomarkers of anaphylaxis
Hyun‑Jin LIM ; Kang Min HAN ; Seung‑Hyun KIM ; Soo‑Kyung RYU ; Ji‑Ran YOU ; Jung‑Hee YOON ; Euna KWON ; Ji‑Eun KIM ; Byeong‑Cheol KANG
Laboratory Animal Research 2024;40(4):461-475
		                        		
		                        			 Background:
		                        			Lac color, a natural red dye derived from the larvae of laccifer lacca kerr, is one of the most commonly used substances in food. To date, no studies have reported on the antigenicity of lac color and the other biomarkers that can determine anaphylactic reactions. To address this, we evaluated the antigenicity of lac color through active systemic anaphylaxis (ASA) in addition to identifying potential biomarkers performing exploratory studies. For ASA test, Guinea pigs (n = 5) were sensitized with 0(negative control), 4 mg/kg of lac color, 4 mg/kg of lac color + FCA, and 5 mg/kg of ovalbumin + FCA (positive control) 3 times a week for three weeks. Fourteen days after the last sensi‑ tization, animals were challenged intravenously weekly for two weeks. Hematological and histopathological analyses were performed and compared to control groups. 
		                        		
		                        			Results:
		                        			In the ASA test, all lac color groups showed mild symptoms such as nose rubbing, urination, and evacuation, which are insufficient indicators of anaphylaxis. Exploratory studies identified several biomarkers: decreased platelet count, and increased basophil count; distention in the lung, and redness on the inner wall of trachea; mononuclear inflammatory cell infiltration (MICI) in the ear, and heart hemorrhage. When these biomarkers were applied to the ASA test of lac color, in comparison to the negative control group, the positive control group (ovalbumin + FCA) showed a significant over 60-fold reduction in platelet count and nearly threefold higher basophil count compared to other groups. Furthermore, only positive control group exhibited full lung distention and severe redness on the inner wall of the trachea. Mononuclear inflammatory cell infiltration (MICI) in the ear was about three times higher, and heart hemorrhage was only present in the positive control group compared to others. None of the lac color groups were different from the negative control group (p > 0.05), whereas the positive control group was significantly different (p < 0.05). 
		                        		
		                        			Conclusions
		                        			Our study concludes that lac color, at the tested concentrations, does not induce antigenicity in the guinea pig model, providing valuable safety data. Furthermore, the biomarkers identified in this study offer a supportive approach to evaluating the immunogenicity of substances in future research. 
		                        		
		                        		
		                        		
		                        	
5.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
		                        		
		                        			
		                        			 Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association. 
		                        		
		                        		
		                        		
		                        	
6.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
		                        		
		                        			
		                        			 Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association. 
		                        		
		                        		
		                        		
		                        	
7.Antigenicity evaluation of lac color and exploratory study for identifying potential biomarkers of anaphylaxis
Hyun‑Jin LIM ; Kang Min HAN ; Seung‑Hyun KIM ; Soo‑Kyung RYU ; Ji‑Ran YOU ; Jung‑Hee YOON ; Euna KWON ; Ji‑Eun KIM ; Byeong‑Cheol KANG
Laboratory Animal Research 2024;40(4):461-475
		                        		
		                        			 Background:
		                        			Lac color, a natural red dye derived from the larvae of laccifer lacca kerr, is one of the most commonly used substances in food. To date, no studies have reported on the antigenicity of lac color and the other biomarkers that can determine anaphylactic reactions. To address this, we evaluated the antigenicity of lac color through active systemic anaphylaxis (ASA) in addition to identifying potential biomarkers performing exploratory studies. For ASA test, Guinea pigs (n = 5) were sensitized with 0(negative control), 4 mg/kg of lac color, 4 mg/kg of lac color + FCA, and 5 mg/kg of ovalbumin + FCA (positive control) 3 times a week for three weeks. Fourteen days after the last sensi‑ tization, animals were challenged intravenously weekly for two weeks. Hematological and histopathological analyses were performed and compared to control groups. 
		                        		
		                        			Results:
		                        			In the ASA test, all lac color groups showed mild symptoms such as nose rubbing, urination, and evacuation, which are insufficient indicators of anaphylaxis. Exploratory studies identified several biomarkers: decreased platelet count, and increased basophil count; distention in the lung, and redness on the inner wall of trachea; mononuclear inflammatory cell infiltration (MICI) in the ear, and heart hemorrhage. When these biomarkers were applied to the ASA test of lac color, in comparison to the negative control group, the positive control group (ovalbumin + FCA) showed a significant over 60-fold reduction in platelet count and nearly threefold higher basophil count compared to other groups. Furthermore, only positive control group exhibited full lung distention and severe redness on the inner wall of the trachea. Mononuclear inflammatory cell infiltration (MICI) in the ear was about three times higher, and heart hemorrhage was only present in the positive control group compared to others. None of the lac color groups were different from the negative control group (p > 0.05), whereas the positive control group was significantly different (p < 0.05). 
		                        		
		                        			Conclusions
		                        			Our study concludes that lac color, at the tested concentrations, does not induce antigenicity in the guinea pig model, providing valuable safety data. Furthermore, the biomarkers identified in this study offer a supportive approach to evaluating the immunogenicity of substances in future research. 
		                        		
		                        		
		                        		
		                        	
8.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
		                        		
		                        			
		                        			 Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association. 
		                        		
		                        		
		                        		
		                        	
9.Antigenicity evaluation of lac color and exploratory study for identifying potential biomarkers of anaphylaxis
Hyun‑Jin LIM ; Kang Min HAN ; Seung‑Hyun KIM ; Soo‑Kyung RYU ; Ji‑Ran YOU ; Jung‑Hee YOON ; Euna KWON ; Ji‑Eun KIM ; Byeong‑Cheol KANG
Laboratory Animal Research 2024;40(4):461-475
		                        		
		                        			 Background:
		                        			Lac color, a natural red dye derived from the larvae of laccifer lacca kerr, is one of the most commonly used substances in food. To date, no studies have reported on the antigenicity of lac color and the other biomarkers that can determine anaphylactic reactions. To address this, we evaluated the antigenicity of lac color through active systemic anaphylaxis (ASA) in addition to identifying potential biomarkers performing exploratory studies. For ASA test, Guinea pigs (n = 5) were sensitized with 0(negative control), 4 mg/kg of lac color, 4 mg/kg of lac color + FCA, and 5 mg/kg of ovalbumin + FCA (positive control) 3 times a week for three weeks. Fourteen days after the last sensi‑ tization, animals were challenged intravenously weekly for two weeks. Hematological and histopathological analyses were performed and compared to control groups. 
		                        		
		                        			Results:
		                        			In the ASA test, all lac color groups showed mild symptoms such as nose rubbing, urination, and evacuation, which are insufficient indicators of anaphylaxis. Exploratory studies identified several biomarkers: decreased platelet count, and increased basophil count; distention in the lung, and redness on the inner wall of trachea; mononuclear inflammatory cell infiltration (MICI) in the ear, and heart hemorrhage. When these biomarkers were applied to the ASA test of lac color, in comparison to the negative control group, the positive control group (ovalbumin + FCA) showed a significant over 60-fold reduction in platelet count and nearly threefold higher basophil count compared to other groups. Furthermore, only positive control group exhibited full lung distention and severe redness on the inner wall of the trachea. Mononuclear inflammatory cell infiltration (MICI) in the ear was about three times higher, and heart hemorrhage was only present in the positive control group compared to others. None of the lac color groups were different from the negative control group (p > 0.05), whereas the positive control group was significantly different (p < 0.05). 
		                        		
		                        			Conclusions
		                        			Our study concludes that lac color, at the tested concentrations, does not induce antigenicity in the guinea pig model, providing valuable safety data. Furthermore, the biomarkers identified in this study offer a supportive approach to evaluating the immunogenicity of substances in future research. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail