1.Inhibitory effect of extract of Coptidis Rhizoma on invasion of Candida albicans hyphae in vitro.
Hui-Xia NIU ; Qiang-Jun DUAN ; Gao-Xiang SHI ; Da-Qiang WU ; Jing SHAO ; Tian-Ming WANG ; Chang-Zhong WANG
China Journal of Chinese Materia Medica 2019;44(1):125-130
		                        		
		                        			
		                        			The aim of this paper was to investigate the inhibitory effect of extract of Coptidis Rhizoma(ECR) on invasion of Candida albicans hyphae in vitro.XTT reduction method was used to evaluate the metabolic activity of C.albicans.The colony edge growth of C.albicans was observed by solid medium.The growth of C.albicans hyphae was determined on semi-solid medium.The morphology and viability changes of C.albicans hyphae were assessed by scanning electron microscope and fluorescence microscope.qRT-PCR method was used to detect the ALS3 and SSA1 expression of C.albicans invasin genes.The results showed that the metabolic viability by XTT method detected that the activity of C.albicans was gradually decreased under the intervention of 64,128 and 256 mg·L-1 of ECR respectively.128,256 mg·L-1 of ECR significantly inhibited colony folds and wrinkles on solid medium and the hyphal invasion in semi-solid medium.Scanning electron microscopy and fluorescence microscopy showed that 128,256 mg·L-1 of ECR could inhibit the formation of C.albicans hyphae.qRT-PCR results showed that the expression of invasin gene ALS3 and SSA1 was down-regulated,and especially 256 mg·L-1 of ECR could down-regulate the two genes expression by 4.8,1.68 times respectively.This study showed that ECR can affect the invasiveness of C.albicans by inhibiting the growth of hyphae and the expression of invasin.
		                        		
		                        		
		                        		
		                        			Adenosine Triphosphatases
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Candida albicans
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Drugs, Chinese Herbal
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Fungal Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Gene Expression Regulation, Fungal
		                        			;
		                        		
		                        			HSP70 Heat-Shock Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Hyphae
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			ultrastructure
		                        			;
		                        		
		                        			Microscopy, Electron, Scanning
		                        			
		                        		
		                        	
2.Effect of naringin on oxidative stress and endoplasmic reticulum stress in diabetic cardiomyopathy.
Yu-Fei ZHANG ; Na-Na MENG ; Hou-Zhong LI ; Yi-Jie WEN ; Jie-Ting LIU ; Chun-Lei ZHANG ; Xiao-Huan YUAN ; Xiu-Dong JIN
China Journal of Chinese Materia Medica 2018;43(3):596-602
		                        		
		                        			
		                        			To explore the protective effect of naringin(Nar) on the injury of myocardium tissues induced by streptozotocin(STZ) in diabetic rats and the relationship with oxidative stress and endoplasmic reticulum stress(ERS), the male SD rats were intraperitoneally injected with streptozotocin(STZ, 60 mg·kg⁻¹) to establish the diabetic rat model and then randomly divided into the type 1 diabetic rat group(T1DR), the low-dose Nar group(Nar25), the middle-dose Nar group(Nar50) and the high-dose Nar group(Nar100). The normal rats were designed as control group(Con). Nar25, Nar50, Nar100 groups were orally administered with Nar at the doses of 25.0, 50.0, 100.0 mg·kg⁻¹ per day, respectively, while the normal group and the T1DR group were orally administered with saline. At the 8th week after treatment, fasting plasma glucose and heart mass index were measured. The pathological changes in myocardial tissues were observed by microscope. The cardiac malondialdehyde(MDA) level and superoxide dismutase(SOD) activities were measured. The gene and protein expressions of glucose-regulated protein 78(GRP78), C/EBP homologous protein(CHOP), cysteinyl aspartate-specific proteinase 12(caspase 12) were detected by qRT-PCR and Western blot. According to the results, compared with control group, the myocardial structure was damaged, the content of MDA was increased, while the activities of SOD were decreased(<0.05) in T1DR group. GRP78, CHOP and caspase 12 mRNA and protein expressions were increased significantly in T1DR group(<0.05, <0.01). Compared with T1DR group, myocardial structure damage was alleviated in Nar treatment group. The content of MDA was decreased, while the activities of SOD were increased significantly. The mRNA and protein expressions of GRP78, CHOP and caspase 12 were increased, especially in middle and high-dose groups(<0.05, <0.01). After treatment with Nar for 8 weeks, myocardial structure damage was obviously alleviated in Nar treatment groups. The content of MDA was decreased, while the activities of SOD were increased significantly in myocardial tissues. The mRNA and protein expressions of GRP78, CHOP and caspase 12 were increased, especially in middle and high-dose groups(<0.05, <0.01). The findings suggest that Nar may protect myocardium in diabetic rats by reducing mitochondrial oxidative stress injuries and inhibiting the ERS-mediated cell apoptosis pathway.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			Cardiotonic Agents
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Caspase 12
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Diabetes Mellitus, Experimental
		                        			;
		                        		
		                        			Diabetic Cardiomyopathies
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			Endoplasmic Reticulum Stress
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Flavanones
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Heat-Shock Proteins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Malondialdehyde
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Oxidative Stress
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Superoxide Dismutase
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Transcription Factor CHOP
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
3.Effects of rosuvastatin in homocysteine induced mouse vascular smooth muscle cell dedifferentiation and endoplasmic reticulum stress and its mechanisms.
Chang-Zuan ZHOU ; Sun-Lei PAN ; Hui LIN ; Li-Ping MENG ; Zheng JI ; Ju-Fang CHI ; Hang-Yuan GUO
Chinese Journal of Applied Physiology 2018;34(1):43-48
		                        		
		                        			OBJECTIVE:
		                        			To investigate the effect of rosuvastatin on homocysteine (Hcy) induced mousevascular smooth muscle cells(VSMCs) dedifferentiation and endoplasmic reticulum stress(ERS).
		                        		
		                        			METHODS:
		                        			VSMCs were co-cultured with Hcy and different concentration of rosuvastatin (0.1, 1.0 and 10 μmol/L). Cytoskeleton remodeling, VSMCs phenotype markers (smooth muscle actin-α, calponin and osteopontin) and ERS marker mRNAs (Herpud1, XBP1s and GRP78) were detected at predicted time. Tunicamycin was used to induce, respectively 4-phenylbutyrate(4-PBA) inhibition, ERS in VSMCs and cellular migration, proliferation and expression of phenotype proteins were analyzed. Mammalian target of rapamycin(mTOR)-P70S6 kinase (P70S6K) signaling agonist phosphatidic acid and inhibitor rapamycin were used in Rsv treated VSMCs. And then mTOR signaling and ERS associated mRNAs were detected.
		                        		
		                        			RESULTS:
		                        			Compared with Hcy group, Hcy+ Rsv group (1.0 and 10 μmol/L) showed enhanced α-SMA and calponin expression (<0.01), suppressed ERS mRNA levels (<0.01) and promoted polarity of cytoskeleton. Compared with Hcy group, Hcy+Rsv group and Hcy+4-PBA group showed suppressed proliferation, migration and enhanced contractile protein expression (<0.01); while tunicamycin could reverse the effect of Rsv on Hcy treated cells. Furthermore, alleviated mTOR-P70S6K phosphorylation and ERS (<0.01)were observed in Hcy+Rsv group and Hcy+rapamycin group, compared with Hcy group; while phosphatidic acid inhibited the effect of Rsv on mTOR signaling activation and ERS mRNA levels (<0.01).
		                        		
		                        			CONCLUSIONS
		                        			Rosuvastatin could inhibit Hcy induced VSMCs dedifferentiation suppressing ERS, which might be regulated by mTOR-P70S6K signaling.
		                        		
		                        		
		                        		
		                        			Actins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Calcium-Binding Proteins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cell Dedifferentiation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Endoplasmic Reticulum Stress
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Heat-Shock Proteins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Homocysteine
		                        			;
		                        		
		                        			Membrane Proteins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Microfilament Proteins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Muscle, Smooth, Vascular
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Myocytes, Smooth Muscle
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Ribosomal Protein S6 Kinases, 70-kDa
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Rosuvastatin Calcium
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			TOR Serine-Threonine Kinases
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			X-Box Binding Protein 1
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
4.Effects of total flavonids of astragalus on arrhythmia,endoplasmic reticulum stress in mice with viral myocarditis.
Hao LIU ; Bate HURILE ; Ying XIONG ; Cheng-Xi WEI ; Li-Ying XUAN ; Yu WANG ; Ming ZHAO
Chinese Journal of Applied Physiology 2018;34(1):16-18
		                        		
		                        			OBJECTIVE:
		                        			To investigate the effects of total flavonids of astragalus(TFA) on arrhythmia, endoplasmic reticulum stress and connexcin in mice with viral myocarditis and to clarify the mechanisms of TFA against viral myocarditis complicated with arrhythmia.
		                        		
		                        			METHODS:
		                        			Thirty-six male Balb/c mice were randomly divided into control group, viral myocarditis group and total flavonoids group (=12). The mice of viral myocarditis were intraperitonealy injected with 0.1 ml/day 10-950 TCID CVB3 for 3 days. The mice of TFA group were intraperitoneal injected with 0.1 ml/day 10-950 TCID CVB3 for 3 days and treated with 0.1ml, 20 mg/L TFA by tail vein injection. At the end of the experiment, arrhythmia was detected by electrocardiogram, the heart of mice were stained by HE, the expressions of glucose-regulated protein 78(GRP78), endoplasmic reticulum stress signaling pathway factor activating transcription factor 4(ATF4) and connexcin 43(Cx43) were detected by Western blot.
		                        		
		                        			RESULTS:
		                        			The expressions of GRP78 and ATF4 were increased and the expression of Cx43 was decreased in viral myocarditis, while TFA inhibited these effect of viral myocarditis in heart of mice.
		                        		
		                        			CONCLUSIONS
		                        			The antiarrhythmic effect of TFA may be related to the alleviation of endoplasmic reticulum stress and the increase of Cx43 expression.
		                        		
		                        		
		                        		
		                        			Activating Transcription Factor 4
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Arrhythmias, Cardiac
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			Astragalus Plant
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Connexin 43
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Coxsackievirus Infections
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			Drugs, Chinese Herbal
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Endoplasmic Reticulum Stress
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Flavonoids
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Heat-Shock Proteins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred BALB C
		                        			;
		                        		
		                        			Myocarditis
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			virology
		                        			;
		                        		
		                        			Myocardium
		                        			
		                        		
		                        	
5.A standardized extract of Asparagus officinalis stem prevents reduction in heat shock protein 70 expression in ultraviolet-B-irradiated normal human dermal fibroblasts: an in vitro study.
Ken SHIRATO ; Jun TAKANARI ; Tomoko KODA ; Takuya SAKURAI ; Junetsu OGASAWARA ; Hideki OHNO ; Takako KIZAKI
Environmental Health and Preventive Medicine 2018;23(1):40-40
		                        		
		                        			BACKGROUND:
		                        			Heat shock protein 70 (HSP70) exhibits protective effects against ultraviolet (UV)-induced premature skin aging. A standardized extract of Asparagus officinalis stem (EAS) is produced as a novel and unique functional food that induces HSP70 cellular expression. To elucidate the anti-photoaging potencies of EAS, we examined its effects on HSP70 expression levels in UV-B-irradiated normal human dermal fibroblasts (NHDFs).
		                        		
		                        			METHODS:
		                        			NHDFs were treated with 1 mg/mL of EAS or dextrin (vehicle control) prior to UV-B irradiation (20 mJ/cm). After culturing NHDFs for different time periods, HSP70 mRNA and protein levels were analyzed using real-time polymerase chain reaction and western blotting, respectively.
		                        		
		                        			RESULTS:
		                        			UV-B-irradiated NHDFs showed reduced HSP70 mRNA levels after 1-6 h of culture, which were recovered after 24 h of culture. Treatment with EAS alone for 24 h increased HSP70 mRNA levels in the NHDFs, but the increase was not reflected in its protein levels. On the other hand, pretreatment with EAS abolished the UV-B irradiation-induced reduction in HSP70 expression at both mRNA and protein levels. These results suggest that EAS is capable to preserve HSP70 quantity in UV-B-irradiated NHDFs.
		                        		
		                        			CONCLUSIONS
		                        			EAS exhibits anti-photoaging potencies by preventing the reduction in HSP70 expression in UV-irradiated dermal fibroblasts.
		                        		
		                        		
		                        		
		                        			Asparagus Plant
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Fibroblasts
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			radiation effects
		                        			;
		                        		
		                        			HSP70 Heat-Shock Proteins
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Middle Aged
		                        			;
		                        		
		                        			Plant Extracts
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Polymerase Chain Reaction
		                        			;
		                        		
		                        			Skin
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			radiation effects
		                        			;
		                        		
		                        			Skin Aging
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			radiation effects
		                        			;
		                        		
		                        			Telomere
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Ultraviolet Rays
		                        			;
		                        		
		                        			adverse effects
		                        			
		                        		
		                        	
6.The Role of Serotonin in Ventricular Repolarization in Pregnant Mice.
Shanyu CUI ; Hyewon PARK ; Hyelim PARK ; Dasom MUN ; Seung Hyun LEE ; Hyoeun KIM ; Nuri YUN ; Hail KIM ; Michael KIM ; Hui Nam PAK ; Moon Hyoung LEE ; Boyoung JOUNG
Yonsei Medical Journal 2018;59(2):279-286
		                        		
		                        			
		                        			PURPOSE: The mechanisms underlying repolarization abnormalities during pregnancy are not fully understood. Although maternal serotonin (5-hydroxytryptamine, 5-HT) production is an important determinant for normal fetal development in mice, its role in mothers remains unclear. We evaluated the role of serotonin in ventricular repolarization in mice hearts via 5Htr3 receptor (Htr3a) and investigated the mechanism of QT-prolongation during pregnancy. MATERIALS AND METHODS: We measured current amplitudes and the expression levels of voltage-gated K⁺ (Kv) channels in freshly-isolated left ventricular myocytes from wild-type non-pregnant (WT-NP), late-pregnant (WT-LP), and non-pregnant Htr3a homozygous knockout mice (Htr3a(−/−)-NP). RESULTS: During pregnancy, serotonin and tryptophan hydroxylase 1, a rate-limiting enzyme for the synthesis of serotonin, were markedly increased in hearts and serum. Serotonin increased Kv current densities concomitant with the shortening of the QT interval in WT-NP mice, but not in WT-LP and Htr3a(−/−)-NP mice. Ondansetron, an Htr3 antagonist, decreased Kv currents in WT-LP mice, but not in WT-NP mice. Kv4.3 directly interacted with Htr3a, and this binding was facilitated by serotonin. Serotonin increased the trafficking of Kv4.3 channels to the cellular membrane in WT-NP. CONCLUSION: Serotonin increases repolarizing currents by augmenting Kv currents. Elevated serotonin levels during pregnancy counterbalance pregnancy-related QT prolongation by facilitating Htr3-mediated Kv currents.
		                        		
		                        		
		                        		
		                        			*Action Potentials/drug effects
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cell Membrane/drug effects/metabolism
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Electrocardiography
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			HSC70 Heat-Shock Proteins/metabolism
		                        			;
		                        		
		                        			HSP90 Heat-Shock Proteins/metabolism
		                        			;
		                        		
		                        			Heart Ventricles/drug effects/*metabolism
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Mice, Knockout
		                        			;
		                        		
		                        			Myocytes, Cardiac/drug effects/metabolism
		                        			;
		                        		
		                        			Potassium Channels/metabolism
		                        			;
		                        		
		                        			Pregnancy
		                        			;
		                        		
		                        			Rabbits
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Receptors, Serotonin, 5-HT3/metabolism
		                        			;
		                        		
		                        			Serotonin/*metabolism
		                        			;
		                        		
		                        			Serotonin 5-HT3 Receptor Agonists/pharmacology
		                        			
		                        		
		                        	
7.Protective effect of prostaglandin E1 against brain injury induced by hyperoxia in neonatal rats.
Shan YANG ; You-Chen ZHANG ; Hui-Wen LI ; Zheng-Yong JIN
Chinese Journal of Contemporary Pediatrics 2018;20(3):230-235
OBJECTIVETo investigate the protective effect of prostaglandin E1 (PGE-1) against brain injury induced by hyperoxia in neonatal rats and observe the changes in the expression of glucose-regulated protein 78 (GRP78) and cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP), and to provide a theoretical basis for the clinical application of PGE-1 in the treatment of neonatal brain injury induced by hyperoxia.
METHODSSixty neonatal Wistar rats were randomly divided into air control group, hyperoxic brain injury model group, and hyperoxic brain injury+PGE-1 group. All rats except those in the air control group were treated to establish a hyperoxic brain injury model. From the first day of modeling, the rats in the hyperoxia brain injury+PGE-1 group were intraperitoneally injected with PGE-1 2 μg/kg daily for 7 consecutive days, while the other two groups were treated with normal saline instead. The water content of brain tissue was measured; the pathological changes of brain tissue were evaluated by hematoxylin-eosin staining; the apoptosis of brain cells was assessed by nuclear staining combined with TUNEL staining; the protein expression of GRP78 and CHOP in brain tissue was measured by Western blot.
RESULTSThe water content of brain tissue in the hyperoxic brain injury model group was significantly higher than that in the hyperoxic brain injury+PGE-1 group and air control group (P<0.05); the water content of brain tissue in the hyperoxic brain injury+PGE-1 group was significantly higher than that in the air control group (P<0.05). The pathological section of brain tissue showed inflammatory cell infiltration and mild cerebrovascular edema in the brain parenchyma in the hyperoxic brain injury model group; the periparenchymal inflammation and edema in the hyperoxic brain injury+PGE-1 group were milder than those in the hyperoxic brain injury model group. The apoptosis index of brain tissue in the hyperoxic brain injury model group was significantly higher than that in the hyperoxic brain injury+PGE-1 group and air control group (P<0.05); the apoptosis index of brain tissue in the hyperoxic brain injury+PGE-1 group was significantly higher than that in the air control group (P<0.05). The protein expression of GRP78 and CHOP in brain tissue was significantly higher in the hyperoxic brain injury model group than in the hyperoxic brain injury+PGE-1 group and air control group (P<0.05); the protein expression of GRP78 and CHOP was significantly higher in the hyperoxic brain injury+PGE-1 group than in the air control group (P<0.05).
CONCLUSIONSPGE-1 has a protective effect against hyperoxia-induced brain injury in neonatal rats, which may be related to the inhibition of cell apoptosis by down-regulating the expression of GRP78 and CHOP.
Alprostadil ; therapeutic use ; Animals ; Animals, Newborn ; Apoptosis ; drug effects ; Brain ; pathology ; Brain Injuries ; metabolism ; pathology ; prevention & control ; Heat-Shock Proteins ; analysis ; Hyperoxia ; complications ; Neuroprotective Agents ; therapeutic use ; Rats ; Rats, Wistar ; Transcription Factor CHOP ; analysis
8.Mechanism underlying berberine's effects on HSP70/TNFα under heat stress: Correlation with the TATA boxes.
Jing-Fei JIANG ; Fan LEI ; Zhi-Yi YUAN ; Yu-Gang WANG ; Xin-Pei WANG ; Xiao-Jin YAN ; Xuan YU ; Dong-Ming XING ; Li-Jun DU
Chinese Journal of Natural Medicines (English Ed.) 2017;15(3):178-191
		                        		
		                        			
		                        			Heat stress can stimulate an increase in body temperature, which is correlated with increased expression of heat shock protein 70 (HSP70) and tumor necrosis factor α (TNFα). The exact mechanism underlying the HSP70 and TNFα induction is unclear. Berberine (BBR) can significantly inhibit the temperature rise caused by heat stress, but the mechanism responsible for the BBR effect on HSP70 and TNFα signaling has not been investigated. The aim of the present study was to explore the relationship between the expression of HSP70 and TNFα and the effects of BBR under heat conditions, using in vivo and in vitro models. The expression levels of HSP70 and TNFα were determined using RT-PCR and Western blotting analyses. The results showed that the levels of HSP70 and TNFα were up-regulated under heat conditions (40 °C). HSP70 acted as a chaperone to maintain TNFα homeostasis with rising the temperature, but knockdown of HSP70 could not down-regulate the level of TNFα. Furthermore, TNFα could not influence the expression of HSP70 under normal and heat conditions. BBR targeted both HSP70 and TNFα by suppressing their gene transcription, thereby decreasing body temperature under heat conditions. In conclusion, BBR has a potential to be developed as a therapeutic strategy for suppressing the thermal effects in hot environments.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Berberine
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			HSP70 Heat-Shock Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Heat Stress Disorders
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Hot Temperature
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred ICR
		                        			;
		                        		
		                        			TATA Box
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
9.Arctiin ameliorates advanced oxidation protein product-induced epithelial-to- mesenchymal transition in HK-2 cells by inhibiting endoplasmic reticulum stress.
Jun ZHANG ; Li-Li HUANG ; Xiu-Jie LIANG ; Yue WANG ; Na DUAN ; Xiao-Hong XIANG ; Shuang-Shuang SHU ; Ting-Ting GUO ; Lei YANG ; Xun TANG
Journal of Southern Medical University 2016;36(6):833-837
OBJECTIVETo investigate the effect of arctiin on advanced oxidation protein product (AOPP)-induced epithelial-to-mesenchymal transition (EMT) in tubular cells and explore the mechanisms underlying this effect.
METHODSHuman proximal tubular cells (HK-2 cells) were treated with bovine serum albumin (BSA) or AOPPs in the presence or absence of arctiin. The expressions of E-cadherin, vimentin, and GRP78 at the protein and mRNA levels in the cells were examined using Western blotting and quantitative real-time PCR. The level of reactive oxygen species (ROS) was measured by flow cytometry with DCFH-DA as the fluorescent probe.
RESULTSCompared with BSA-treated cells, the cells treated with AOPPs showed decreased expression of epithelial cell marker E-cadherin and overexpression of mesenchymal marker vimentin and endoplasmic reticulum stress marker GRP78 with an increased ROS level. These changes induced by AOPPs were partly inhibited by arctiin.
CONCLUSIONArctiin can ameliorate AOPP-induced EMT in tubular cells by inhibiting endoplasmic reticulum stress, and oxidative stress response may participate in this process.
Advanced Oxidation Protein Products ; adverse effects ; Cadherins ; metabolism ; Cell Line ; Endoplasmic Reticulum Stress ; Epithelial Cells ; cytology ; drug effects ; Epithelial-Mesenchymal Transition ; Furans ; pharmacology ; Glucosides ; pharmacology ; Heat-Shock Proteins ; metabolism ; Humans ; Kidney Tubules ; cytology ; drug effects ; Oxidative Stress ; Reactive Oxygen Species ; metabolism ; Vimentin ; metabolism
10.HSP90 Inhibitor 17-AAG Inhibits Multiple Myeloma Cell Proliferation by Down-regulating Wnt/β-Catenin Signaling Pathway.
Kan-Kan CHEN ; Zheng-Mei HE ; Bang-He DING ; Yue CHEN ; Li-Juan ZHANG ; Liang YU ; Jian GAO
Journal of Experimental Hematology 2016;24(1):117-121
OBJECTIVETo investigate the inhibitory effect of HSP90 inhibitory 17-AAG on proliferation of multiple myeloma cells and its main mechanism.
METHODSThe multiple myeloma cells U266 were treated with 17-AAG of different concentrations (200, 400, 600 and 800 nmol/L) for 24, 48, and 72 hours respectively, then the proliferation rate, expression levels of β-catenin and C-MYC protein, as well as cell cycle of U266 cells were treated with 17-AAG and were detected by MTT method, Western blot and flow cytometry, respectively.
RESULTSThe 17-AAG showed inhibitory effect on the proliferation of U266 cells in dose- and time-depetent manners (r = -0.518, P < 0.05 and r = -0.473, P < 0.05), while the culture medium without 17-AAG displayed no inhibitory effect on proliferation of U266 cells (P > 0.05). The result of culturing U266 cells for 72 hours by 17-AAG of different concentrations showed that the more high of 17-AAG concentration, the more low level of β-catenin and C-MYC proteins (P < 0.05); At same time of culture, the more high of 17-AAG concentration, the more high of cell ratio in G1 phase (P < 0.05), at same concentration of 17-AAG, the more long time of culture, the more high of cell ratio in G1 phase (P < 0.05).
CONCLUSIONThe HSP90 inhibitory 17-AAG can inhibit the proliferation of multiple myeloma cells, the down-regulation of Wnt/β-catenin signaling pathway and inhibition of HSP90 expression may be the main mechnisms of 17-AAG effect.
Apoptosis ; Benzoquinones ; pharmacology ; Cell Cycle ; Cell Division ; Cell Line, Tumor ; drug effects ; Cell Proliferation ; drug effects ; Down-Regulation ; HSP90 Heat-Shock Proteins ; antagonists & inhibitors ; Humans ; Lactams, Macrocyclic ; pharmacology ; Multiple Myeloma ; metabolism ; pathology ; Proto-Oncogene Proteins c-myc ; metabolism ; Wnt Signaling Pathway ; drug effects ; beta Catenin ; metabolism
            
Result Analysis
Print
Save
E-mail