3.Gender differences in mortality following tanscatheter aortic valve replacement (TAVR): a single-centre retrospective analysis from China.
Qi LIU ; Yali WANG ; Yijian LI ; Tianyuan XIONG ; Fei CHEN ; Yuanweixiang OU ; Xi WANG ; Yijun YAO ; Kaiyu JIA ; Yujia LIANG ; Xin WEI ; Xi LI ; Yong PENG ; Jiafu WEI ; Sen HE ; Qiao LI ; Wei MENG ; Guo CHEN ; Wenxia ZHOU ; Mingxia ZHENG ; Xuan ZHOU ; Zhengang ZHAO ; Chen MAO ; Feng YUAN
Chinese Medical Journal 2023;136(20):2511-2513
4.Peri-procedural myocardial injury predicts poor short-term prognosis after TAVR: A single-center retrospective analysis from China.
Qi LIU ; Kaiyu JIA ; Yijun YAO ; Yijian LI ; Tianyuan XIONG ; Fei CHEN ; Yuanweixiang OU ; Xi WANG ; Yujia LIANG ; Xi LI ; Yong PENG ; Jiafu WEI ; Sen HE ; Qiao LI ; Wei MENG ; Guo CHEN ; Wenxia ZHOU ; Mingxia ZHENG ; Xuan ZHOU ; Yuan FENG ; Mao CHEN
Chinese Medical Journal 2023;136(24):3013-3015
7.In Vitro Experimental Study on Hemodynamics of Transcatheter Aortic Valve Replacement.
Chinese Journal of Medical Instrumentation 2023;47(4):383-390
The patient-specific aortic silicone model was established based on CTA data. The digital particle image velocimetry (DPIV) test method in the modified ViVitro pulsatile flow system was used to investigate the aortic hemodynamic performance and flow field characteristics before and after transcatheter aortic valve replacement (TAVR). The results showed that the hemodynamic parameters were consistent with the clinical data, which verified the accuracy of the model. From the comparative study of preoperative and postoperative effective orifice area (0.33 cm2 and 1.78 cm2), mean pressure difference (58 mmHg and 9 mmHg), percentage of regurgitation (52% and 8%), peak flow velocity (4.60 m/s and 1.81 m/s) and flow field distribution (eccentric jet and uniform jet), the immediate efficacy after TAVR is good. From the perspective of viscous shear stress and Reynolds shear stress, the risk of hemolysis and thrombotic problems was low in preoperative and postoperative patient-specific models. This study provides a set of reliable DPIV testing methods for aortic flow field, and provides biomechanical basis for the immediate and long-term effectiveness of TAVR from the perspective of hemodynamics and flow field characteristics. It has important application value in clinical diagnosis, surgical treatment and long-term evaluation.
Humans
;
Transcatheter Aortic Valve Replacement/methods*
;
Aortic Valve/surgery*
;
Heart Valve Prosthesis
;
Hemodynamics
;
Aortic Valve Stenosis/diagnosis*
;
Treatment Outcome
8.Cerebral ischemic injury after transcatheter aortic valve replacement in patients with pure aortic regurgitation.
Xianbao LIU ; Hanyi DAI ; Jiaqi FAN ; Dao ZHOU ; Gangjie ZHU ; Abuduwufuer YIDILISI ; Jun CHEN ; Yeming XU ; Lihan WANG ; Jian'an WANG
Journal of Zhejiang University. Science. B 2023;24(6):530-538
Considering the surgical risk stratification for patients with severe calcific aortic stenosis (AS), transcatheter aortic valve replacement (TAVR) is a reliable alternative to surgical aortic valve replacement (SAVR) (Fan et al., 2020, 2021; Lee et al., 2021). Despite the favorable clinical benefits of TAVR, stroke remains a dreaded perioperative complication (Auffret et al., 2016; Kapadia et al., 2016; Kleiman et al., 2016; Huded et al., 2019). Ischemic overt stroke, identified in 1.4% to 4.3% of patients in TAVR clinical practice, has been associated with prolonged disability and increased mortality (Auffret et al., 2016; Kapadia et al., 2016; Levi et al., 2022). The prevalence of hyperintensity cerebral ischemic lesions detected by diffusion-weighted magnetic resonance imaging (DW-MRI) was reported to be about 80%, which is associated with impaired neurocognitive function and vascular dementia (Vermeer et al., 2003; Barber et al., 2008; Kahlert et al., 2010).
Humans
;
Transcatheter Aortic Valve Replacement
;
Aortic Valve Insufficiency
;
Diffusion Magnetic Resonance Imaging
;
Aortic Valve Stenosis
;
Stroke
9.Feasibility study of using bridging temporary permanent pacemaker in patients with high-degree atrioventricular block after TAVR.
San Shuai CHANG ; Xin Min LIU ; Zhi Nan LU ; Jing YAO ; Cneng Qian YIN ; Wen Hui WU ; Fei YUAN ; Tai Yang LUO ; Zheng Ming JIANG ; Guang Yuan SONG
Chinese Journal of Cardiology 2023;51(6):648-655
Objective: To determine the feasibility of using temporary permanent pacemaker (TPPM) in patients with high-degree atrioventricular block (AVB) after transcatheter aortic valve replacement (TAVR) as bridging strategy to reduce avoidable permanent pacemaker implantation. Methods: This is a prospective observational study. Consecutive patients undergoing TAVR at Beijing Anzhen Hospital and the First Affiliated Hospital of Zhengzhou University from August 2021 to February 2022 were screened. Patients with high-degree AVB and TPPM were included. Patients were followed up for 4 weeks with pacemaker interrogation at every week. The endpoint was the success rate of TPPM removal and free from permanent pacemaker at 1 month after TPPM. The criteria of removing TPPM was no indication of permanent pacing and no pacing signal in 12 lead electrocardiogram (EGG) and 24 hours dynamic EGG, meanwhile the last pacemaker interrogation indicated that ventricular pacing rate was 0. Routinely follow-up ECG was extended to 6 months after removal of TPPM. Results: Ten patients met the inclusion criteria for TPPM, aged (77.0±11.1) years, wirh 7 females. There were 7 patients with third-degree AVB, 1 patient with second-degree AVB, 2 patients with first degree AVB with PR interval>240 ms and LBBB with QRS duration>150 ms. TPPM were applied on the 10 patients for (35±7) days. Among 8 patients with high-degree AVB, 3 recovered to sinus rhythm, and 3 recovered to sinus rhythm with bundle branch block. The other 2 patients with persistent third-degree AVB received permanent pacemaker implantation. For the 2 patients with first-degree AVB and LBBB, PR interval shortened to within 200 ms. TPPM was successfully removed in 8 patients (8/10) at 1 month without permanent pacemaker implantation, of which 2 patients recovered within 24 hours after TAVR and 6 patients recovered 24 hours later after TAVR. No aggravation of conduction block or permanent pacemaker indication were observed in 8 patients during follow-up at 6 months. No procedure-related adverse events occurred in all patients. Conclusion: TPPM is reliable and safe to provide certain buffer time to distinguish whether a permanent pacemaker is necessary in patients with high-degree conduction block after TAVR.
Female
;
Humans
;
Atrioventricular Block/therapy*
;
Feasibility Studies
;
Transcatheter Aortic Valve Replacement
;
Pacemaker, Artificial
;
Bundle-Branch Block

Result Analysis
Print
Save
E-mail