1.Synergistic inhibition of autophagic flux and induction of apoptosis in cervical cancer cells by Mito-TEMPO and hyperthermia.
Yu-Mei LI ; Qing-Li ZHAO ; Ryohei OGAWA ; Tatsuji MIZUKAMI ; Yu SONG ; Zheng-Guo CUI ; Jun-Ichi SAITOH ; Kyo NOGUCHI
Environmental Health and Preventive Medicine 2025;30():67-67
BACKGROUND:
Hyperthermia (HT), while a cancer treatment approach, isn't always effective alone. Therefore, identifying hyperthermia enhancers is crucial. We demonstrated that Mito-TEMPO ([2-[(1-Hydroxy-2,2,6,6-tetramethylpiperidin-4-yl) amino]-2-oxoethyl]-triphenylphosphanium, MT) acts as a potent thermosensitizer, promoting cell death in human cervical cancer (HeLa) cells.
METHODS:
Cells were pretreated with 0.4 mM MT for 5 minutes, followed by exposure to hyperthermia (42 °C for 60 minutes). The impacts of MT/HT on cell viability, proliferation, apoptosis, endoplasmic reticulum (ER) stress, apoptosis-related proteins and autophagy, autophagy-related proteins expression were measured. The relationships between autophagy and apoptosis were further investigated using the specific autophagy inhibitor chloroquine (CQ) and the autophagy inducer rapamycin (Rapa).
RESULTS:
The combined treatment reduced the mitochondrial membrane potential (MMP) and increased ROS production. It also upregulated the pro-apoptotic protein Bax and downregulated anti-apoptotic proteins such as Bcl-2 and MCL-1. As a result, Caspase-3 was activated. Additionally, the combined treatment upregulated the expression of p-PERK/PERK, ATF-4, CHOP proteins. Moreover, the combined treatment also increased the expression of LC3 II and p62, decreased expression of LAMP 1 and Cathepsin D and increased lysosomal pH, indicating coordinated changes in autophagy regulation. Notably, intensification of apoptosis induced by the combined treatment was observed with CQ, whereas attenuation was seen with Rapa.
CONCLUSIONS
MT effectively enhanced HT-induced apoptosis in HeLa cells. Elevated ER stress and interruption of autophagy flux are the possible underlying molecular mechanisms for this phenomenon. These findings suggested MT can act as a potential thermosensitizer, highlighting its versatility in cancer treatment strategies.
Humans
;
Apoptosis/drug effects*
;
Autophagy/drug effects*
;
HeLa Cells
;
Uterine Cervical Neoplasms/therapy*
;
Female
;
Hyperthermia, Induced
;
Spin Labels
;
Endoplasmic Reticulum Stress/drug effects*
;
Cyclic N-Oxides/pharmacology*
;
Cell Survival/drug effects*
2.Aurora-A overexpression promotes cervical cancer cell invasion and metastasis by activating the NF-κBp65/ARPC4 signaling axis.
Yaqing YUE ; Zhaoxia MU ; Xibo WANG ; Yan LIU
Journal of Southern Medical University 2025;45(4):837-843
OBJECTIVES:
To investigate the regulatory effects of Aurora-A in regulating proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of cervical cancer cells and the role of actin-related protein 2/3 complex subunit 4 (ARPC4) in mediating its effects.
METHODS:
The plasmids pCDH-NC, pCDH-Aurora-A, and shRNA-ARPC4 were used for inducing Aurora-A overexpression or ARPC4 knockdown in HeLa cells. The cells were divided into vector group, Aurora-A overexpression group, Aurora-A overexpression+ARPC4 knockdown group, and Aurora-A overexpression+NF‑κBp65 inhibitor group and transfected with the corresponding plasmids. The proliferation, colony-forming ability, migration and invasion of the treated Hela cells was evaluated using EdU immunofluorescence assay, crystal violet staining, scratch assay, Transwell assay, and Matrigel assay. Western blotting was performed to detect the changes in cellular expressions of EMT-related proteins and expression levels of NF-κBp65 and ARPC4.
RESULTS:
The expression of ARPC4 was significantly decreased in HeLa cells with Aurora-A knockdown and increased in Aurora-A-overexpressing cells. Aurora-A overexpression obviously promoted proliferation, migration, and invasion abilities of HeLa cells, and these effects was significantly antagonized by ARPC4 knockdown. In Aurora-A-overexpressing cells, the phosphorylation level of NF-κBp65 and the expression level of ARPC4 were increased significantly, and application of the NF‑κBp65 inhibitor obviously lowered the expression level of ARPC4.
CONCLUSIONS
Aurora-A overexpression upregulates the expression of ARPC4 by activating the NF-κBp65 signaling pathway, thereby promoting migration, invasion and EMT of HeLa cells.
Humans
;
Uterine Cervical Neoplasms/metabolism*
;
Female
;
HeLa Cells
;
Epithelial-Mesenchymal Transition
;
Signal Transduction
;
Cell Movement
;
Neoplasm Invasiveness
;
Cell Proliferation
;
Aurora Kinase A/metabolism*
;
Transcription Factor RelA/metabolism*
;
Neoplasm Metastasis
3.Cytotoxic anthrone-cyclopentenone heterodimers from the fungus Penicillium sp. guided by molecular networking.
Ruiyun HUO ; Jiayu DONG ; Gaoran LIU ; Ying SHI ; Ling LIU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(10):1259-1267
(±)-Penicithrones A-D (1a/1b-4a/4b), four novel pairs of anthrone-cyclopentenone heterodimers characterized by a distinctive bridged 6/6/6-5 tetracyclic core skeleton, together with three previously identified compounds (5-7), were isolated from the crude extract of the mangrove-derived fungus Penicillium sp., guided by heteronuclear single quantum correlation (HSQC)-based small molecule accurate recognition technology (SMART 2.0) and liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based molecular networking. The structural elucidation of new compounds was accomplished through comprehensive spectroscopic analysis, and their absolute configurations were determined using DP4+ 13C nuclear magnetic resonance (NMR) calculations and electronic circular dichroism (ECD) calculations. Compounds 1a/1b-4a/4b demonstrated moderate cytotoxicity against three human cancer cell lines HeLa, HCT116 and MCF-7 with half maximal inhibitory concentration (IC50) values ranging from 15.95 ± 1.64 to 28.56 ± 2.59 μmol·L-1.
Humans
;
Penicillium/chemistry*
;
Molecular Structure
;
Cyclopentanes/isolation & purification*
;
Cell Line, Tumor
;
Antineoplastic Agents/pharmacology*
;
Tandem Mass Spectrometry
;
Dimerization
;
HeLa Cells
;
Magnetic Resonance Spectroscopy
4.Fabrication of chitosan/hyaluronic acid complex nanoparticles for effective siRNA delivery.
Huaiyi LIU ; Fangqian HUANG ; Baiqiu CHEN ; Yunfeng YAN
Chinese Journal of Biotechnology 2025;41(4):1340-1353
The development of safe and effective carriers is crucial for improving the in vivo stability of siRNA drugs and facilitating their clinical translation. Chitosan (CS), a natural cationic polymer, shows great potential in nucleic acid drug delivery. To optimize the physicochemical properties of CS/siRNA nanoparticles (NPs) and increase their siRNA delivery efficacy, in this study, hyaluronic acid (HA) was added into CS to form stable complex NPs through electrostatic interactions. The HA component is able to target the CD44 receptors on the surface of tumor cells, facilitating efficient siRNA delivery. First, we systematically investigated the effects of the molecular weights and mass ratio of CS and HA on the physicochemical properties of CS/HA NPs. The results showed that at HA: CS mass ratios of approximately 5:5 and 6:4, the complex NPs exhibited small particle sizes, narrow size distribution, and high storage stability. Under similar conditions, the size of CS/HA NPs increased with the increase in the molecular weights of CS and HA. Based on these findings, suitable conditions were selected to prepare CS/HA NPs for siRNA delivery. Cell experiments demonstrated that the introduction of HA effectively reduced the cytotoxicity of the CS delivery system and enhanced the NP uptake. The CS/HA/siRNA NPs achieved 50% to 60% silencing of the luciferase gene in HeLa-Luc cells. CS/HA NPs formed smaller nanoparticles with siRNA than pure CS and mediated specific interactions with tumor cells via HA, leading to efficient siRNA delivery. These findings provide valuable insights into the construction of natural polymer composite nanoparticles for application in siRNA delivery.
Hyaluronic Acid/chemistry*
;
Chitosan/chemistry*
;
RNA, Small Interfering/administration & dosage*
;
Nanoparticles/chemistry*
;
Humans
;
Particle Size
;
HeLa Cells
;
Hyaluronan Receptors
5.Oncolytic virus-mediated base editing for targeted killing of cervical cancer cells.
Huanhuan XU ; Siwei LI ; Xi LUO ; Zuping ZHOU ; Changhao BI
Chinese Journal of Biotechnology 2025;41(4):1382-1394
Conventional cancer therapies, such as radiotherapy and chemotherapy, often damage normal cells and may induce new tumors. Oncolytic viruses (OVs) selectively target tumor cells while sparing normal cells. Most OVs used in clinical trials have been genetically engineered to enhance their ability to target tumor cells and activate immune responses. To develop a specific OV-based approach for treating cervical cancer, this study constructed an oncolytic adenovirus that delivered a base editor targeting oncogenes to achieve efficient killing of tumor cells through inhibiting tumor growth and directly lysing tumor cells. We utilized the human telomerase reverse transcriptase (TERT) promoter to drive the expression of adenovirus early region 1A (E1A) and successfully constructed the P-hTERT-E1A-GFP vector, which was validated for its activity in cervical cancer cells. Given the critical role of the MYC oncogene in the research of oncology, identifying efficient editing sites for the MYC oncogene is a key step in this study.Three MYC-targeting gRNAs were engineered and co-delivered with ABE8e base editor plasmids into HEK293T cells. Following puromycin selection, Sanger sequencing demonstrated differential editing efficiencies: MYC-1 (43%), MYC-2 (25%), and MYC-3 (35%), identifying MYC-1 as the most efficient editing locus. By constructing the P-ABEs-hTERT-E1A-GFP and P-MYC gRNA-hTERT-E1A-GFP vectors, we successfully packaged the virus and confirmed its specificity and efficacy. The experimental results demonstrate that this novel oncolytic adenovirus effectively inhibits the growth of HeLa cells in vitro, providing new experimental evidence and potential strategies for treating cervical cancer based on the HeLa cell model.
Humans
;
Uterine Cervical Neoplasms/pathology*
;
Oncolytic Viruses/genetics*
;
Female
;
HEK293 Cells
;
Oncolytic Virotherapy/methods*
;
Adenoviridae/genetics*
;
Gene Editing/methods*
;
Telomerase/genetics*
;
Adenovirus E1A Proteins/genetics*
;
Genetic Vectors/genetics*
;
HeLa Cells
6.m6A modification regulates PLK1 expression and mitosis.
Xiaoli CHANG ; Xin YAN ; Zhenyu YANG ; Shuwen CHENG ; Xiaofeng ZHU ; Zhantong TANG ; Wenxia TIAN ; Yujun ZHAO ; Yongbo PAN ; Shan GAO
Chinese Journal of Biotechnology 2025;41(4):1559-1572
N6-methyladenosine (m6A) modification plays a critical role in cell cycle regulation, while the mechanism of m6A in regulating mitosis remains underexplored. Here, we found that the total m6A modification level in cells increased during mitosis by the liquid chromatography-mass spectrometry/mass spectrometry and m6A dot blot assays. Silencing methyltransferase-like 3 (METTL3) or METTL14 results in delayed mitosis, abnormal spindle assembly, and chromosome segregation defects by the immunofluorescence. By analyzing transcriptome-wide m6A targets in HeLa cells, we identified polo-like kinase 1 (PLK1) as a key gene modified by m6A in regulating mitosis. Specifically, through immunoblotting and RNA pulldown, m6A modification inhibits PLK1 translation via YTH N6-methyladenosine RNA binding protein 1, thus mediating cell cycle homeostasis. Demethylation of PLK1 mRNA leads to significant mitotic abnormalities. These findings highlight the critical role of m6A in regulating mitosis and the potential of m6A as a therapeutic target in proliferative diseases such as cancer.
Humans
;
Polo-Like Kinase 1
;
Cell Cycle Proteins/metabolism*
;
Proto-Oncogene Proteins/metabolism*
;
Protein Serine-Threonine Kinases/metabolism*
;
Mitosis/physiology*
;
HeLa Cells
;
Adenosine/genetics*
;
Methyltransferases/metabolism*
;
RNA, Messenger/metabolism*
;
RNA-Binding Proteins/metabolism*
7.Asperuloside Promotes Apoptosis of Cervical Cancer Cells through Endoplasmic Reticulum Stress-Mitochondrial Pathway.
Zhi-Min QI ; Xia WANG ; Xia LIU ; Juan ZHAO
Chinese journal of integrative medicine 2024;30(1):34-41
OBJECTIVE:
To investigate the effects of asperuloside on cervical cancer based on endoplasmic reticulum (ER) stress and mitochondrial pathway.
METHODS:
Different doses (12.5-800 µg/mL) of asperuloside were used to treat cervical cancer cell lines Hela and CaSki to calculate the half maximal inhibitory concentration (IC50) of asperuloside. The cell proliferation was analyzed by clone formation assay. Cell apoptosis, intracellular reactive oxygen species (ROS) and mitochondrial membrane potential were determined by flow cytometry. The protein expressions of cleaved-caspase-3, Bcl-2, Bax, Cyt-c, cleaved-caspase-4 and glucose-regulated protein 78 (GRP78) were analyzed by Western blot. And the inhibitor of ER stress, 4-phenyl butyric acid (4-PBA) was used to treat cervical cancer cells to further verify the role of ER stress in the apoptosis of cervical cancer cells induced by asperuloside.
RESULTS:
Asperuloside of 325, 650, and 1300 µg/mL significantly inhibited the proliferation and promoted apoptosis of Hela and CaSki cells (P<0.01). All doses of asperuloside significantly increased intracellular ROS levels, reduced mitochondrial membrane potential, significantly reduced Bcl-2 protein expression level, and increased Bax, Cyt-c, GRP78 and cleaved-caspase-4 expressions (P<0.01). In addition, 10 mmol/L 4-PBA treatment significantly promoted cell proliferation and reduced apoptosis (P<0.05), and 650 µg/mL asperuloside could reverse 4-PBA-induced increased cell proliferation, decreased apoptosis and cleaved-caspase-3, -4 and GRP78 protein expressions (P<0.05).
CONCLUSION
Our study revealed the role of asperuloside in cervical cancer, suggesting that asperuloside promotes apoptosis of cervical cancer cells through ER stress-mitochondrial pathway.
Female
;
Humans
;
Uterine Cervical Neoplasms/metabolism*
;
Caspase 3/metabolism*
;
bcl-2-Associated X Protein/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Endoplasmic Reticulum Chaperone BiP
;
HeLa Cells
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Apoptosis
;
Endoplasmic Reticulum Stress
;
Cell Line, Tumor
8.Construction of a muscle-specific synthetic promoter library and correlation analysis of the element composition and activity of highly active promoters.
Zening WANG ; Mingfeng JIANG ; Jiu QU ; Xiaowei LI ; Yili LIU
Chinese Journal of Biotechnology 2024;40(12):4616-4627
The purpose of this study is to construct a muscle-specific synthetic promoter library, screen out muscle-specific promoters with high activity, analyze the relationship between element composition and activity of highly active promoters, and provide a theoretical basis for artificial synthesis of promoters. In this study, 19 promoter fragments derived from muscle-specific elements, conserved elements, and viral regulatory sequences were selected and randomLy connected to construct a muscle-specific synthetic promoter library. The luciferase plasmids pCMV-Luc and pSPs-Luc were constructed and transfected into the myoblast cell line C2C12. The activities of the synthesized promoters were evaluated by the luciferase activity assay. Two non-muscle-derived cell lines HeLa and 3T3 were used to verify the muscle specificity of the highly active promoters. The sequences of promoters with high activity, good muscle specificity, and correct sequences were analyzed to explore the relationship between the element composition and activity of promoters. We successfully constructed a muscle-specific promoter library and screened out 321 effective synthetic promoter plasmids. Among them, the activity of SP-301 promoter was 5.63 times that of CMV. The 15 promoters with high activity were muscle-specific. In the promoters with high activity and correct sequences, there was a relationship between their element composition and activity. Muscle-specific elements accounted for a high proportion in the promoters, while they had weak correlations with the promoter activity, being tissue-specific determinants. Viral elements accounted for no less than 20% in highly active promoters, which may be the key elements for the promoter activity. The content of conserved elements was proportional to the promoter activity. This study lays a theoretical foundation for the synthesis of tissue-specific efficient promoters and provides a new idea for the construction and application of in-situ gene delivery systems.
Promoter Regions, Genetic
;
Humans
;
Animals
;
Mice
;
Gene Library
;
Cell Line
;
Transfection
;
HeLa Cells
;
Luciferases/metabolism*
;
Muscle, Skeletal/metabolism*
;
Plasmids/genetics*
;
Myoblasts/cytology*
9.Spatial expression of the nonsense-mediated mRNA decay factors UPF3A and UPF3B among mouse tissues.
Xin MA ; Yan LI ; Chen CHENGYAN ; Yanmin SHEN ; Hua WANG ; Tangliang LI
Journal of Zhejiang University. Science. B 2023;24(11):1062-1068
无义介导的信使RNA(mRNA)降解途径(nonsense-mediated mRNA decay,简称为NMD)是真核生物细胞内一种重要的基因转录后表达调控机制,它积极参与一系列细胞生理和生化过程,控制细胞命运和生命体的组织稳态。NMD的缺陷会导致人类疾病,如神经发育障碍、肿瘤发生和自身免疫疾病等。UPF3 (Up-frameshift protein 3)是一个核心的NMD因子,它最早在酵母中被发现。UPF3A和UPF3B是UPF3在生物进化到脊椎动物阶段出现的两个旁系同源物,在NMD中具有激活或抑制的作用。以往研究发现,UPF3B蛋白几乎在所有哺乳动物器官中均有表达,而UPF3A蛋白在除睾丸外的大多数哺乳动物组织中难以被检测到。解释这一现象的假说为:在NMD途径中,UPF3B具有比UPF3A更高的竞争性结合UPF2的能力,UPF3B和UPF2的结合促使UPF3A成为游离状态,而游离的UPF3A蛋白不稳定且易被降解。此假说提示UPF3A和UPF3B在NMD中存在拮抗作用。在本研究中,我们重新定量评估了UPF3A和UPF3B在野生型成年雄性和雌性小鼠的9个主要组织和生殖器官中的mRNA和蛋白表达,结果证实UPF3A在雄性生殖细胞中表达量最高。令人惊讶的是,我们发现在包括大脑和胸腺在内的大多数组织中,UPF3A与UPF3B的蛋白水平相当,而在小鼠脾、肺组织中,UPF3A表达高于UPF3B。公共基因表达数据进一步支持了上述发现。因此,我们的研究表明了UPF3A是小鼠组织中普遍表达的NMD因子。同时,该研究结果推测:在生理条件下,UPF3A和UPF3B蛋白之间不存在竞争抑制,且UPF3A在多种哺乳动物组织的稳态中发挥重要作用。
Animals
;
Humans
;
Mice
;
HeLa Cells
;
Nonsense Mediated mRNA Decay
;
RNA-Binding Proteins/genetics*
10.Abietane diterpenoids and iridoids from Caryopteris mongolica.
Shanshan ZHANG ; Xudong MAO ; Hongtao XU ; Xiaohui WEI ; Guixin CHOU
Chinese Journal of Natural Medicines (English Ed.) 2023;21(12):927-937
Six new abietane diterpenoids (1-6) and five undescribed iridoids (7-11) have been isolated from the aerial parts of Caryopteris mongolica. The intricate structural characterization of these compounds was meticulously undertaken using an array of advanced spectroscopic techniques. This process was further enhanced by the application of DP4+ probability analyses and electronic circular dichroism (ECD) calculations. Following isolation and structural elucidation, the cytotoxicity of these compounds was evaluated. Among them, compound 3 stood out, displaying significant cytotoxic activity against HeLa cells with an IC50 value of 7.83 ± 1.28 μmol·L-1. Additionally, compounds 1, 2, 4, 9, and 10 manifested moderate cytotoxic effects on specific cell lines, with IC50 values ranging from 11.7 to 20.9 μmol·L-1.
Humans
;
Abietanes/chemistry*
;
HeLa Cells
;
Lamiaceae/chemistry*
;
Circular Dichroism
;
Diterpenes/chemistry*
;
Molecular Structure

Result Analysis
Print
Save
E-mail