1.Adapting the Community Readiness Model and Validating a Community Readiness Tool for Childhood Obesity Prevention Programs in Iran
Mahdieh NIKNAM ; Nasrin OMIDVAR ; Parisa AMIRI ; Hassan EINI-ZINAB ; Naser KALANTARI
Journal of Preventive Medicine and Public Health 2023;56(1):77-87
Objectives:
It is critical to assess community readiness (CR) when implementing childhood obesity prevention programs to ensure their eventual success and sustainability. Multiple tools have been developed based on various conceptions of readiness. One of the most widely used and flexible tools is based on the community readiness model (CRM). This study aimed to adapt the CRM and assess the validity of a community readiness tool (CRT) for childhood obesity prevention programs in Iran.
Methods:
A Delphi study that included 26 individuals with expertise in 8 different subject areas was conducted to adapt the CRM into a theoretical framework for developing a CRT. After linguistic validation was conducted for a 35-question CR interview guide, the modified interview guide was evaluated for its content and face validity. The quantitative and qualitative analyses were performed using Stata version 13 and MAXQDA 2010, respectively.
Results:
The Delphi panelists confirmed the necessity/appropriateness and adequacy of all 6 CRM dimensions. The Persian version of the interview guide was then modified based on the qualitative results of the Delphi study, and 2 more questions were added to the community climate dimension of the original CRT. All questions in the modified version had acceptable content and face validity. The final CR interview guide included 37 questions across 6 CRM dimensions.
Conclusions
By adapting the CRM and confirming linguistic, content, and face validity, the present study devised a CRT for childhood obesity prevention programs that can be used in relevant studies in Iran.
2.Impact of cardiac life support training on retention of knowledge measured by pretest, immediate posttest, and 6-months posttest
Thiruselvi Subramaniam ; Shahid Hassan ; Ann Jee Tan ; Siti Ramlah Abdul Rahman ; Jun Siang Tay
International e-Journal of Science, Medicine and Education 2022;16(2):28-35
Introduction:
Cardiac resuscitation skills are a necessity for newly graduated doctors as they are first responders during a crisis. Despite undergraduate exposure, interns still struggle in an actual crisis. We evaluated final year medical students’ long-term retention of knowledge following cardiac life support
training prior to exit from medical school to determine the need to revise and re-strategize.
Methods:
Thirty-seven final year medical students participated in a quasi-experimental research after a cardiac life support (CLS) course where results of their one best answer assessment-pretest, immediate posttest and 6 months posttest were analyzed.
Results:
A repeated measure ANOVA was conducted on mean test scores of 30-items one best answer (OBA) questions, measured as pre-test, immediate and 6 months posttests after the course. The result showed significant time effect, Wilks Lambda = 0.126, F (2,35) = 121.468, P = <.001. Follow up comparison indicated that each pairwise comparison difference was significant (p ≤ 0. 05). Both immediate and after 6 months post-course test scores were statistically better than the pretest scores suggesting that there was improvement in knowledge after the course despite the decay.
Conclusion
Our results showed that retention of knowledge as a short-term memory worked well immediately after the hands-on cardiac resuscitation course. However, though there was improved knowledge even after 6 months compared to before the course, there was decay in knowledge. There is a need to re-strategize to improve knowledge retention.
Knowledge
;
Cardiopulmonary Resuscitation
3.CAR-T cells: Early successes in blood cancer and challenges in solid tumors.
Hassan DANA ; Ghanbar Mahmoodi CHALBATANI ; Seyed Amir JALALI ; Hamid Reza MIRZAEI ; Stephan A GRUPP ; Eloah Rabello SUAREZ ; Catarina RAPÔSO ; Thomas J WEBSTER
Acta Pharmaceutica Sinica B 2021;11(5):1129-1147
New approaches to cancer immunotherapy have been developed, showing the ability to harness the immune system to treat and eliminate cancer. For many solid tumors, therapy with checkpoint inhibitors has shown promise. For hematologic malignancies, adoptive and engineered cell therapies are being widely developed, using cells such as T lymphocytes, as well as natural killer (NK) cells, dendritic cells, and potentially others. Among these adoptive cell therapies, the most active and advanced therapy involves chimeric antigen receptor (CAR)-T cells, which are T cells in which a chimeric antigen receptor is used to redirect specificity and allow T cell recognition, activation and killing of cancers, such as leukemia and lymphoma. Two autologous CAR-T products have been approved by several health authorities, starting with the U.S. Food and Drug Administration (FDA) in 2017. These products have shown powerful, inducing, long-lasting effects against B cell cancers in many cases. In distinction to the results seen in hematologic malignancies, the field of using CAR-T products against solid tumors is in its infancy. Targeting solid tumors and trafficking CAR-T cells into an immunosuppressive microenvironment are both significant challenges. The goal of this review is to summarize some of the most recent aspects of CAR-T cell design and manufacturing that have led to successes in hematological malignancies, allowing the reader to appreciate the barriers that must be overcome to extend CAR-T therapies to solid tumors successfully.
4.Shade reproduction and the ability of lithium disilicate ceramics to mask dark substrates
Maryam IRAVANI ; Sayna SHAMSZADEH ; Narges PANAHANDEH ; Seyedeh Mahsa SHEIKH-AL-ESLAMIAN ; Hassan TORABZADEH
Restorative Dentistry & Endodontics 2020;45(3):e41-
Objectives:
This study aimed to evaluate the ability of lithium disilicate ceramics to reproduce the A2 shade and to mask A4 substrates.
Materials and Methods:
Twenty-four discs (8 mm in diameter, shade A2) of high translucency (groups 1–3) and low translucency (groups 4–6) of IPS e.max ceramic with different thicknesses (0.5, 0.75, and 1 mm) were fabricated as monolithic structures. In addition, discs of medium opacity (group 7–8) with different core/veneer combinations (0.3 mm/0.7 mm and 0.5 mm/0.5 mm) were fabricated as bilayer structures. Specimens were superimposed on an A4 substrate (complex). The color changes of the complex were measured using a spectrophotometer on a black background, and the ΔE values of the complex were compared with either the A4 substrate or the A2 shade tab. One-way analysis of variance, the Tukey honest significant difference test, and the Fisher test were used to analyze the data (p < 0.05).
Results:
Significant between-group differences were found for comparisons to both the A4 substrate and the A2 shade (p < 0.05). When compared with the A4 substrate, the ΔE values in all groups were in the non-acceptable range. When compared with the A2 shade, the ΔE values in all groups, except groups 2 and 3, were in the clinically acceptable range.
Conclusions
All translucencies and thicknesses masked the underlying dark substrate.However, the low-translucency IPS e.max Press better reproduced the A2 shade.
5.Bioactivity of endodontic biomaterials on dental pulp stem cells through dentin
Bahar JAVID ; Narges PANAHANDEH ; Hassan TORABZADEH ; Hamid NAZARIAN ; Ardavan PARHIZKAR ; Saeed ASGARY
Restorative Dentistry & Endodontics 2020;45(1):3-
OBJECTIVES: This study investigated the indirect effect of calcium-enriched mixture (CEM) cement and mineral trioxide aggregate (MTA), as 2 calcium silicate-based hydraulic cements, on human dental pulp stem cells (hDPSCs) through different dentin thicknesses.MATERIALS AND METHODS: Two-chamber setups were designed to simulate indirect pulp capping (IPC). Human molars were sectioned to obtain 0.1-, 0.3-, and 0.5-mm-thick dentin discs, which were placed between the 2 chambers to simulate an IPC procedure. Then, MTA and CEM were applied on one side of the discs, while hDPSCs were cultured on the other side. After 2 weeks of incubation, the cells were removed, and cell proliferation, morphology, and attachment to the discs were evaluated under scanning electron microscopy (SEM). Energy-dispersive X-ray (EDXA) spectroscopy was performed for elemental analysis. Alkaline phosphatase (ALP) activity was assessed quantitatively. The data were analyzed using the Kruskal-Wallis and Mann-Whitney tests.RESULTS: SEM micrographs revealed elongated cells, collagen fibers, and calcified nucleations in all samples. EDXA verified that the calcified nucleations consisted of calcium phosphate. The largest calcifications were seen in the 0.1-mm-thick dentin subgroups. There was no significant difference in ALP activity across the CEM subgroups; however, ALP activity was significantly lower in the 0.1-mm-thick dentin subgroup than in the other MTA subgroups (p < 0.05).CONCLUSIONS: The employed capping biomaterials exerted biological activity on hDPSCs, as shown by cell proliferation, morphology, and attachment and calcific precipitations, through 0.1- to 0.5-mm-thick layers of dentin. In IPC, the bioactivity of these endodontic biomaterials is probably beneficial.
Alkaline Phosphatase
;
Biocompatible Materials
;
Calcium
;
Cell Proliferation
;
Collagen
;
Dental Pulp Capping
;
Dental Pulp
;
Dentin
;
Endodontics
;
Humans
;
Microscopy, Electron, Scanning
;
Miners
;
Molar
;
Pemetrexed
;
Spectrum Analysis
;
Stem Cells
6.Bioactivity of endodontic biomaterials on dental pulp stem cells through dentin
Bahar JAVID ; Narges PANAHANDEH ; Hassan TORABZADEH ; Hamid NAZARIAN ; Ardavan PARHIZKAR ; Saeed ASGARY
Restorative Dentistry & Endodontics 2020;45(1):e3-
OBJECTIVES:
This study investigated the indirect effect of calcium-enriched mixture (CEM) cement and mineral trioxide aggregate (MTA), as 2 calcium silicate-based hydraulic cements, on human dental pulp stem cells (hDPSCs) through different dentin thicknesses.
MATERIALS AND METHODS:
Two-chamber setups were designed to simulate indirect pulp capping (IPC). Human molars were sectioned to obtain 0.1-, 0.3-, and 0.5-mm-thick dentin discs, which were placed between the 2 chambers to simulate an IPC procedure. Then, MTA and CEM were applied on one side of the discs, while hDPSCs were cultured on the other side. After 2 weeks of incubation, the cells were removed, and cell proliferation, morphology, and attachment to the discs were evaluated under scanning electron microscopy (SEM). Energy-dispersive X-ray (EDXA) spectroscopy was performed for elemental analysis. Alkaline phosphatase (ALP) activity was assessed quantitatively. The data were analyzed using the Kruskal-Wallis and Mann-Whitney tests.
RESULTS:
SEM micrographs revealed elongated cells, collagen fibers, and calcified nucleations in all samples. EDXA verified that the calcified nucleations consisted of calcium phosphate. The largest calcifications were seen in the 0.1-mm-thick dentin subgroups. There was no significant difference in ALP activity across the CEM subgroups; however, ALP activity was significantly lower in the 0.1-mm-thick dentin subgroup than in the other MTA subgroups (p < 0.05).
CONCLUSIONS
The employed capping biomaterials exerted biological activity on hDPSCs, as shown by cell proliferation, morphology, and attachment and calcific precipitations, through 0.1- to 0.5-mm-thick layers of dentin. In IPC, the bioactivity of these endodontic biomaterials is probably beneficial.
7.Shade reproduction and the ability of lithium disilicate ceramics to mask dark substrates
Maryam IRAVANI ; Sayna SHAMSZADEH ; Narges PANAHANDEH ; Seyedeh Mahsa SHEIKH-AL-ESLAMIAN ; Hassan TORABZADEH
Restorative Dentistry & Endodontics 2020;45(3):e41-
Objectives:
This study aimed to evaluate the ability of lithium disilicate ceramics to reproduce the A2 shade and to mask A4 substrates.
Materials and Methods:
Twenty-four discs (8 mm in diameter, shade A2) of high translucency (groups 1–3) and low translucency (groups 4–6) of IPS e.max ceramic with different thicknesses (0.5, 0.75, and 1 mm) were fabricated as monolithic structures. In addition, discs of medium opacity (group 7–8) with different core/veneer combinations (0.3 mm/0.7 mm and 0.5 mm/0.5 mm) were fabricated as bilayer structures. Specimens were superimposed on an A4 substrate (complex). The color changes of the complex were measured using a spectrophotometer on a black background, and the ΔE values of the complex were compared with either the A4 substrate or the A2 shade tab. One-way analysis of variance, the Tukey honest significant difference test, and the Fisher test were used to analyze the data (p < 0.05).
Results:
Significant between-group differences were found for comparisons to both the A4 substrate and the A2 shade (p < 0.05). When compared with the A4 substrate, the ΔE values in all groups were in the non-acceptable range. When compared with the A2 shade, the ΔE values in all groups, except groups 2 and 3, were in the clinically acceptable range.
Conclusions
All translucencies and thicknesses masked the underlying dark substrate.However, the low-translucency IPS e.max Press better reproduced the A2 shade.
8. The impact of climatic variables on the population dynamics of the main malaria vector, Anopheles stephensi Liston (Diptera: Culicidae), in southern Iran
Madineh ABBASI ; Hassan VATANDOOST ; Ahmad HANAFI-BOJD ; Madineh ABBASI ; Abbas RAHIMI FOROUSHANI ; Tohid JAFARI-KOSHKI ; Tohid JAFARI-KOSHKI ; Kamran PAKDAD
Asian Pacific Journal of Tropical Medicine 2020;13(10):448-455
Objective: To determine the significance of temperature, rainfall and humidity in the seasonal abundance of Anopheles stephensi in southern Iran. Methods: Data on the monthly abundance of Anopheles stephensi larvae and adults were gathered from earlier studies conducted between 2002 and 2019 in malaria prone areas of southeastern Iran. Climatic data for the studied counties were obtained from climatology stations. Generalized estimating equations method was used for cluster correlation of data for each study site in different years. Results: A significant relationship was found between monthly density of adult and larvae of Anopheles stephensi and precipitation, max temperature and mean temperature, both with simple and multiple generalized estimating equations analysis (P<0.05). But when analysis was done with one month lag, only relationship between monthly density of adults and larvae of Anopheles stephensi and max temperature was significant (P<0.05). Conclusions: This study provides a basis for developing multivariate time series models, which can be used to develop improved appropriate epidemic prediction systems for these areas. Long-term entomological study in the studied sites by expert teams is recommended to compare the abundance of malaria vectors in the different areas and their association with climatic variables. Abbasi Madineh 1 Deparment of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran; Infectious and Tropical Diseases Research Center,Tabriz University of Medical Sciences, Tabriz Rahimi Foroushani Abbas 2 Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran Jafari-Koshki Tohid 3 Molecular Medicine Research Center; Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz Pakdad Kamran 4 Department of Parasitology & Mycology, Paramedical School, Shahid Beheshti University of Medical Sciences, Tehran Vatandoost Hassan 5 Deparment of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran Hanafi-Bojd Ahmad 6 Deparment of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran WHO. Malaria report 2019. Geneva: WHO; 2019. Vatandoost H, Raeisi A, Saghafipour A, Nikpour F, Nejati J. Malaria situation in Iran: 2002-2017. Malar J 2019; 18: 200. Hanafi-Bojd AA, Azari-Hamidian S, Vatandoost H, Charrahy Z. Spatio-temporal distribution of malaria vectors (Diptera: Culicidae) across different climatic zones of Iran. Asian Pac J Trop Med 2011; 6: 498-504. Vatandoost H, Oshaghi MA, Abaie MR, Shahi M, Yaghoobi F, Baghaii M, et al. Bionomics of Anopheles stephensi Liston in the malarious area of Hormozgan Province, southern Iran. Acta Trop 2006; 97(2): 196-203. Faulde MK, Rueda LM, Khaireh BA. First record of the Asian malaria vector Anopheles stephensi and its possible role in the resurgence of malaria in Djibouti, Horn of Africa. Acta Trop 2014; 139: 39-43. Gayan Dharmasiri G, Yashan Perera A, Harishchandra J, Herath H, Aravindan K, Jayasooriya HTR, et al. First record of Anopheles stephensi in Sri Lanka: A potential challenge for prevention of malaria reintroduction. Malar J 2017; 16: 326. Carter TE, Yared S, Gebresilassie A, Bonnell V, Damodaran L, Lopez K, et al. First detection of Anopheles stephensi Liston, 1901 (Diptera: Culicidae) in Ethiopia using molecular and morphological approaches. Acta Trop 2018; 188: 180-186. Zhou G, Munga S, Minakawa N. Spatial relationship between adult malaria vector abundance and environmental factors in western Kenya highlands. Am J Trop Med Hyg 2007; 77(1): 29-35. Bashar K, Tuno N. Seasonal abundance of Anopheles mosquitoes and their association with meteorological factors and malaria incidence in Bangladesh. Parasites Vectors 2014; 7: 442. Gardiner LS. Climate change and vector-borne disease. University Corporation for Atmospheric Research. 2018. [Online]. Available from: https://scied.ucar.edu/longcontent/climate-change-and-vector-borne- disease [Accessed on 9 June 2019]. Patz JA, Lindsay SW. New challenges, new tools: The impact of climate change on infectious diseases. Curr Opin Microbiol 1999; 2(4): 445-451. Khormi HM, Kumar L. Future malaria spatial pattern based on the potential global warming impact in South and Southeast Asia. Geospat Health 2016; 11(3). doi: 10.4081/gh.2016.416. Ren Z, Wang D, Ma A, Hwang J, Bennett A, Sturrock HJW, et al. Predicting malaria vector distribution under climate change scenarios in China: Challenges for malaria elimination. Sci Rep 2016; 6: 20604. Campbell-lendrum D, Woodruff R. Climate change: Quantifying the health impact at national and local levels. Geneva: World Health Organization; 2007. Hanafi-Bojd AA. Using of remote sensing and geographical information system for estabiling a malaria monitoring system in the Bashadgard endemic focus, Hormozgan Province, Iran. Ph.D. Thesis. Tehran University of Medical Sciences; 2010. No. 4526. Mohammadkhani M, Khanjani N, Bakhtiari B, Sheikhzadeh K. The relation between climatic factors and malaria incidence in Kerman, South East of Iran. Parasite Epidemiol Control 2016; 1: 205-210. Statistical Center of Iran. Country statistical yearbook. 1st ed. Iran: Management & Planning Organization; 2018, p.100-120. Basseri HR, Moosakazemi SH, Yosafi S. Mohebali M, Hajaran H, Jedari M. Anthropophily of malaria vectors in Kahnouj district, south of Kerman, Iran. Iran J Public Health 2005; 34(2): 27-35. Fathian M, Vatandoost H, Moosa-Kazemi H, Raeisi A, Yaghoobi-Ershadi MR, Oshaghi MA, et al. Susceptibility of Culicidae mosquitoes to some insecticides recommended by WHO in a malaria endemic area of Southeastern Iran. J Arthropod-Borne Dis 2015; 9(1): 22-34. Mojahedi A, Basseri HR, Raeisi A, Pakari A. Bioecological characteristics of malaria vectors in different geographical areas of Bandar Abbas County, 2014. J Prev Med 2016; 3(1): 18-25. Nedjati J. The study on some bioecological characteristics of malaria vectors and monitoring of their suseptibility levels to some insecticides in Sarbaz county, Sistan va Baluchestan province. MSc. Thesis. Tehran University of Medical Sciences; 2011. No. 5046. Poudat A. Epidemiological survey of malaria in Bandar Abbas County, 1998-2002. MSc. Thesis. Tehran University of Medical Sciences; 2003. No. 3375. Yeryan M, Basseri HR, Hanafi-Bojd AA, Raeisi A, Edalat H, Safari R. Bio-ecology of malaria vectors in an endemic area, Southeast of Iran. Asian Pac J Trop Med 2016; 9(1): 32-38. Iran Meteorological Organization. Specialized products and services weather. 2019. [Online]. Available from: https://data.irimo.ir/ [Accessed on 10 April 2019]. Cui J. QIC program and model selection in GEE analyses. Stata J 2007; 7(2): 209-220. Aytekin S, Aytekin AM, Alten B. Effect of different larval rearing temperatures on the productivity (R0) and morphology of the malaria vector Anopheles superpictus Grassi (Diptera: Culicidae) using geometric morphometrics. J Vec Ecol 2009; 34: 32-42. Lardeux FJ, Tejerina RH, Quispe V, Chavez TK. A physiological time analysis of the duration of the gonotrophic cycle of Anopheles pseudopunctipennis and its implications for malaria transmission in Bolivia. Malar J 2008; 7: 141. Simon-Oke IA, Olofintoye LK. The effect of climatic factors on the distribution and abundance of mosquito vectors in Ekiti State. J Biol Agri Healthcare 2015; 5(9): 142-146. Jemal Y, Al-Thukair AA. Combining GIS application and climatic factors for mosquito control in Eastern Province, Saudi Arabia. Saudi J Biol Sci 2016; 25(8):1593-1602. Msugh-Ter MM, Aondowase DA, Terese AE. Association of meteorological factors with two principal malaria vector complexes in the University of Agriculture Makurdi community, Central Nigeria. Am J Entomol 2017; 1(2): 31-38. [31 ]Kabbale FG, Akol AM, Kaddu JB, Ambrose W. Biting patterns and seasonality of Anopheles gambiae sensu lato and Anopheles funestus mosquitoes in Kamuli District, Uganda Onapa. Parasit Vectors 2013; 6: 340. Paaijmans KP, Wandago OM, Githeko AK, Takken W. Unexpected high losses of Anopheles gambiae larvae due to rainfall. PLoS One 2007; 2(11): e1146. Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL. Effects of size and temperature on metabolic rate. Science 2001; 293: 2248-2251. Koenraadt CJ, Paaijmans KP, Schneider P, Githeko AK, Takken W. Low level vector survival explains unstable malaria in the western Kenya highlands. Trop Med Int Health 2006; 11(8): 1195-1205. Munga S, Minakawa N, Zhou G, Githeko AK, Yan G. Survivorship of immature stages of Anopheles gambiae s.l. (Diptera: Culicidae) in natural habitats in western Kenya highlands. J Med Entomol 2007; 44: 758-764. Afrane YA, Zhou G, Lawson BW, Githeko AK, Yan G. Effects of microclimatic changes due to deforestation on the survivorship and reproductive fitness of Anopheles gambiae in Western Kenya Highlands. Am J Trop Med Hyg 2006; 74: 772-778. Afrane YA, Githeko AK, Yan G. The Ecology of Anopheles mosquitoes under climate change: Case studies from the effects of environmental changes in East Africa highlands. Ann Acad Sci 2012; 1249: 204-210. Abbasi F, Babaeian I, Malboosi SH, Asmari M, Mokhtari LG. Climate change assessment over Iran during future decades, using statistical downscaling of ECHO-G model. J Geogr Res 2012; 104: 205-230 (In Persian).
9.Huge central intravascular papillary endothelial hyperplasia of the mandible: a case report and review of the literature
Hassan MIRMOHAMMADSADEGHI ; Fatemeh MASHHADIABBAS ; Fatemeh LATIFI
Journal of the Korean Association of Oral and Maxillofacial Surgeons 2019;45(4):180-185
Masson's tumor or intravascular papillary endothelial hyperplasia is an inflammatory soft tissue lesion that rarely occurs in the maxillofacial region and skeletal system. Precise clinical and para-clinical investigation is necessary for the accurate diagnosis and correct treatment of this lesion. This paper presents a massive intravascular papillary endothelial hyperplasia lesion in the bony tissue of the mandible. Histopathology features, clinical appearance, and suitable management are discussed, with a complete review of the literature. The patient underwent composite resection of the lesion as well as reconstruction. No recurrence was observed during 6 years of follow-up. To the best of our knowledge, this is the fourth case of Masson's tumor in mandibular skeletal tissue, which has unique and distinctive features due to its size and location. A rare occurrence in skeletal tissue, complex clinical presentations, and complicated histopathologic findings present diagnostic challenges for treatment of this lesion.
Diagnosis
;
Follow-Up Studies
;
Humans
;
Hyperplasia
;
Mandible
;
Recurrence
10.Huge central intravascular papillary endothelial hyperplasia of the mandible: a case report and review of the literature
Hassan MIRMOHAMMADSADEGHI ; Fatemeh MASHHADIABBAS ; Fatemeh LATIFI
Journal of the Korean Association of Oral and Maxillofacial Surgeons 2019;45(4):180-185
Masson's tumor or intravascular papillary endothelial hyperplasia is an inflammatory soft tissue lesion that rarely occurs in the maxillofacial region and skeletal system. Precise clinical and para-clinical investigation is necessary for the accurate diagnosis and correct treatment of this lesion. This paper presents a massive intravascular papillary endothelial hyperplasia lesion in the bony tissue of the mandible. Histopathology features, clinical appearance, and suitable management are discussed, with a complete review of the literature. The patient underwent composite resection of the lesion as well as reconstruction. No recurrence was observed during 6 years of follow-up. To the best of our knowledge, this is the fourth case of Masson's tumor in mandibular skeletal tissue, which has unique and distinctive features due to its size and location. A rare occurrence in skeletal tissue, complex clinical presentations, and complicated histopathologic findings present diagnostic challenges for treatment of this lesion.


Result Analysis
Print
Save
E-mail