1.Integrated Transcriptomic Landscape and Deep Learning Based Survival Prediction in Uterine Sarcomas
Yaolin SONG ; Guangqi LI ; Zhenqi ZHANG ; Yinbo LIU ; Huiqing JIA ; Chao ZHANG ; Jigang WANG ; Yanjiao HU ; Fengyun HAO ; Xianglan LIU ; Yunxia XIE ; Ding MA ; Ganghua LI ; Zaixian TAI ; Xiaoming XING
Cancer Research and Treatment 2025;57(1):250-266
		                        		
		                        			 Purpose:
		                        			The genomic characteristics of uterine sarcomas have not been fully elucidated. This study aimed to explore the genomic landscape of the uterine sarcomas (USs). 
		                        		
		                        			Materials and Methods:
		                        			Comprehensive genomic analysis through RNA-sequencing was conducted. Gene fusion, differentially expressed genes (DEGs), signaling pathway enrichment, immune cell infiltration, and prognosis were analyzed. A deep learning model was constructed to predict the survival of US patients. 
		                        		
		                        			Results:
		                        			A total of 71 US samples were examined, including 47 endometrial stromal sarcomas (ESS), 18 uterine leiomyosarcomas (uLMS), three adenosarcomas, two carcinosarcomas, and one uterine tumor resembling an ovarian sex-cord tumor. ESS (including high-grade ESS [HGESS] and low-grade ESS [LGESS]) and uLMS showed distinct gene fusion signatures; a novel gene fusion site, MRPS18A–PDC-AS1 could be a potential diagnostic marker for the pathology differential diagnosis of uLMS and ESS; 797 and 477 uterine sarcoma DEGs (uDEGs) were identified in the ESS vs. uLMS and HGESS vs. LGESS groups, respectively. The uDEGs were enriched in multiple pathways. Fifteen genes including LAMB4 were confirmed with prognostic value in USs; immune infiltration analysis revealed the prognositic value of myeloid dendritic cells, plasmacytoid dendritic cells, natural killer cells, macrophage M1, monocytes and hematopoietic stem cells in USs; the deep learning model named Max-Mean Non-Local multi-instance learning (MMN-MIL) showed satisfactory performance in predicting the survival of US patients, with the area under the receiver operating curve curve reached 0.909 and accuracy achieved 0.804. 
		                        		
		                        			Conclusion
		                        			USs harbored distinct gene fusion characteristics and gene expression features between HGESS, LGESS, and uLMS. The MMN-MIL model could effectively predict the survival of US patients. 
		                        		
		                        		
		                        		
		                        	
2.Integrated Transcriptomic Landscape and Deep Learning Based Survival Prediction in Uterine Sarcomas
Yaolin SONG ; Guangqi LI ; Zhenqi ZHANG ; Yinbo LIU ; Huiqing JIA ; Chao ZHANG ; Jigang WANG ; Yanjiao HU ; Fengyun HAO ; Xianglan LIU ; Yunxia XIE ; Ding MA ; Ganghua LI ; Zaixian TAI ; Xiaoming XING
Cancer Research and Treatment 2025;57(1):250-266
		                        		
		                        			 Purpose:
		                        			The genomic characteristics of uterine sarcomas have not been fully elucidated. This study aimed to explore the genomic landscape of the uterine sarcomas (USs). 
		                        		
		                        			Materials and Methods:
		                        			Comprehensive genomic analysis through RNA-sequencing was conducted. Gene fusion, differentially expressed genes (DEGs), signaling pathway enrichment, immune cell infiltration, and prognosis were analyzed. A deep learning model was constructed to predict the survival of US patients. 
		                        		
		                        			Results:
		                        			A total of 71 US samples were examined, including 47 endometrial stromal sarcomas (ESS), 18 uterine leiomyosarcomas (uLMS), three adenosarcomas, two carcinosarcomas, and one uterine tumor resembling an ovarian sex-cord tumor. ESS (including high-grade ESS [HGESS] and low-grade ESS [LGESS]) and uLMS showed distinct gene fusion signatures; a novel gene fusion site, MRPS18A–PDC-AS1 could be a potential diagnostic marker for the pathology differential diagnosis of uLMS and ESS; 797 and 477 uterine sarcoma DEGs (uDEGs) were identified in the ESS vs. uLMS and HGESS vs. LGESS groups, respectively. The uDEGs were enriched in multiple pathways. Fifteen genes including LAMB4 were confirmed with prognostic value in USs; immune infiltration analysis revealed the prognositic value of myeloid dendritic cells, plasmacytoid dendritic cells, natural killer cells, macrophage M1, monocytes and hematopoietic stem cells in USs; the deep learning model named Max-Mean Non-Local multi-instance learning (MMN-MIL) showed satisfactory performance in predicting the survival of US patients, with the area under the receiver operating curve curve reached 0.909 and accuracy achieved 0.804. 
		                        		
		                        			Conclusion
		                        			USs harbored distinct gene fusion characteristics and gene expression features between HGESS, LGESS, and uLMS. The MMN-MIL model could effectively predict the survival of US patients. 
		                        		
		                        		
		                        		
		                        	
3.Integrated Transcriptomic Landscape and Deep Learning Based Survival Prediction in Uterine Sarcomas
Yaolin SONG ; Guangqi LI ; Zhenqi ZHANG ; Yinbo LIU ; Huiqing JIA ; Chao ZHANG ; Jigang WANG ; Yanjiao HU ; Fengyun HAO ; Xianglan LIU ; Yunxia XIE ; Ding MA ; Ganghua LI ; Zaixian TAI ; Xiaoming XING
Cancer Research and Treatment 2025;57(1):250-266
		                        		
		                        			 Purpose:
		                        			The genomic characteristics of uterine sarcomas have not been fully elucidated. This study aimed to explore the genomic landscape of the uterine sarcomas (USs). 
		                        		
		                        			Materials and Methods:
		                        			Comprehensive genomic analysis through RNA-sequencing was conducted. Gene fusion, differentially expressed genes (DEGs), signaling pathway enrichment, immune cell infiltration, and prognosis were analyzed. A deep learning model was constructed to predict the survival of US patients. 
		                        		
		                        			Results:
		                        			A total of 71 US samples were examined, including 47 endometrial stromal sarcomas (ESS), 18 uterine leiomyosarcomas (uLMS), three adenosarcomas, two carcinosarcomas, and one uterine tumor resembling an ovarian sex-cord tumor. ESS (including high-grade ESS [HGESS] and low-grade ESS [LGESS]) and uLMS showed distinct gene fusion signatures; a novel gene fusion site, MRPS18A–PDC-AS1 could be a potential diagnostic marker for the pathology differential diagnosis of uLMS and ESS; 797 and 477 uterine sarcoma DEGs (uDEGs) were identified in the ESS vs. uLMS and HGESS vs. LGESS groups, respectively. The uDEGs were enriched in multiple pathways. Fifteen genes including LAMB4 were confirmed with prognostic value in USs; immune infiltration analysis revealed the prognositic value of myeloid dendritic cells, plasmacytoid dendritic cells, natural killer cells, macrophage M1, monocytes and hematopoietic stem cells in USs; the deep learning model named Max-Mean Non-Local multi-instance learning (MMN-MIL) showed satisfactory performance in predicting the survival of US patients, with the area under the receiver operating curve curve reached 0.909 and accuracy achieved 0.804. 
		                        		
		                        			Conclusion
		                        			USs harbored distinct gene fusion characteristics and gene expression features between HGESS, LGESS, and uLMS. The MMN-MIL model could effectively predict the survival of US patients. 
		                        		
		                        		
		                        		
		                        	
4. Down-regulation of METTL5 inhibits proliferation, migration and invasion of triple-negative breast cancer cells through Wnt/6-catenin signaling pathway
Kun-Lin WU ; Hui-Hao ZHANG ; Kun-Lin WU ; Xiu-Ying LIAO ; Hui-Hao ZHANG ; Qian-Yi YAN ; De-Xing WANG
Chinese Pharmacological Bulletin 2024;40(2):285-291
		                        		
		                        			
		                        			 Aim To investigate the role and potential mechanism of methyltransferase-like 5 (METTL5) in triple-negative breast cancer (TNBC) . Methods The expression of METTL5 in TNBC tumor tissues and cell lines was detected by immunohistochemistry and Western blot. After shRNA targeting METTL5 (shRNAMETTL5) was transfected into TNBC cells, cell proliferation, migration and invasion were detected by CCK-8, colony formation, wound healing and Transwell assays, respectively. Western blot was used to detect the expression of Wnt/p-catenin signaling-related key proteins. A xenograft tumor model was constructed to verify the effect of METTL5 knockdown on the growth of TNBC cells and Wnt/p-catenin signaling activity in vivo. Results The expression of METTL5 was up-regulated in TNBC tumor tissues and cell lines (P < 0. 01) . Knockdown of METTL5 significantly inhibited the proliferation, migration and invasion of TNBC cells and reduced the expression of Wnt/p-catenin signaling molecules (3-catenin, cyclin Dl, matrix metalloproteinase (MMP) -2 and MMP-7 (all P < 0. 01) . Knockdown of METTL5 reduced tumor growth and Wnt/pcatenin signaling activity in vivo. Conclusions Knockdown of METTL5 can inhibit the proliferation, migration and invasion of TNBC cells, which may be related to the inhibition of Wnt/p-catenin signaling pathway. 
		                        		
		                        		
		                        		
		                        	
5.A unicenter real-world study of the correlation factors for complete clinical response in idiopathic inflammatory myopathies
Zhanhong LAI ; Jiachen LI ; Zelin YUN ; Yonggang ZHANG ; Hao ZHANG ; Xiaoyan XING ; Miao SHAO ; Yue-Bo JIN ; Naidi WANG ; Yimin LI ; Yuhui LI ; Zhanguo LI
Journal of Peking University(Health Sciences) 2024;56(2):284-292
		                        		
		                        			
		                        			Objective:To investigate the correlation factors of complete clinical response in idiopathic inflammatory myopathies(IIMs)patients receiving conventional treatment.Methods:Patients diagnosed with IIMs hospitalized in Peking University People's Hospital from January 2000 to June 2023 were in-cluded.The correlation factors of complete clinical response to conventional treatment were identified by analyzing the clinical characteristics,laboratory features,peripheral blood lymphocytes,immunological indicators,and therapeutic drugs.Results:Among the 635 patients included,518 patients finished the follow-up,with an average time of 36.8 months.The total complete clinical response rate of IIMs was 50.0%(259/518).The complete clinical response rate of dermatomyositis(DM),anti-synthetase syn-drome(ASS)and immune-mediated necrotizing myopathy(IMNM)were 53.5%,48.9%and 39.0%,respectively.Fever(P=0.002)and rapid progressive interstitial lung disease(RP-ILD)(P=0.014)were observed much more frequently in non-complete clinical response group than in complete clinical re-sponse group.The aspartate transaminase(AST),lactate dehydrogenase(LDH),D-dimer,erythrocyte sedimentation rate(ESR),C-reaction protein(CRP)and serum ferritin were significantly higher in non-complete clinical response group as compared with complete clinical response group.As for the treat-ment,the percentage of glucocorticoid received and intravenous immunoglobin(IVIG)were significantly higher in non-complete clinical response group than in complete clinical response group.Risk factor analysis showed that IMNM subtype(P=0.007),interstitial lung disease(ILD)(P=0.001),eleva-ted AST(P=0.012),elevated serum ferritin(P=0.016)and decreased count of CD4+T cells in peripheral blood(P=0.004)might be the risk factors for IIMs non-complete clinical response.Conclu-sion:The total complete clinical response rate of IIMs is low,especially for IMNM subtype.More effec-tive intervention should be administered to patients with ILD,elevated AST,elevated serum ferritin or decreased count of CD4+T cells at disease onset.
		                        		
		                        		
		                        		
		                        	
7.Biological scaffold materials and printing technology for repairing bone defects
Xiangyu KONG ; Xing WANG ; Zhiwei PEI ; Jiale CHANG ; Siqin LI ; Ting HAO ; Wanxiong HE ; Baoxin ZHANG ; Yanfei JIA
Chinese Journal of Tissue Engineering Research 2024;28(3):479-485
		                        		
		                        			
		                        			BACKGROUND:In recent years,with the development of biological scaffold materials and bioprinting technology,tissue-engineered bone has become a research hotspot in bone defect repair. OBJECTIVE:To summarize the current treatment methods for bone defects,summarize the biomaterials and bioprinting technology for preparing tissue-engineered bone scaffolds,and explore the application of biomaterials and printing technology in tissue engineering and the current challenges. METHODS:Search terms were"bone defect,tissue engineering,biomaterials,3D printing technology,4D printing technology,bioprinting,biological scaffold,bone repair"in Chinese and English.Relevant documents published from January 1,2009 to December 1,2022 were retrieved on CNKI,PubMed and Web of Science databases.After being screened by the first author,high-quality references were added.A total of 93 articles were included for review. RESULTS AND CONCLUSION:The main treatment methods for bone defects include bone transplantation,membrane-guided regeneration,gene therapy,bone tissue engineering,etc.The best treatment method is still uncertain.Bone tissue engineering technology is a new technology for the treatment of bone defects.It has become the focus of current research by constructing three-dimensional structures that can promote the proliferation and differentiation of osteoblasts and enhance the ability of bone formation.Biological scaffold materials are diverse,with their characteristics,advantages and disadvantages.A single biological material cannot meet the demand for tissue-engineered bone for the scaffold.Usually,multiple materials are combined to complement each other,which is to meet the demand for mechanical properties while taking into account the biological properties of the scaffold.Bioprinting technology can adjust the pore of the scaffold,build a complex spatial structure,and is more conducive to cell adhesion,proliferation and differentiation.The emerging 4D printing technology introduces"time"as the fourth dimension to make the prepared scaffold dynamic.With the synchronous development of smart materials,4D printing technology provides the possibility of efficient repair of bone defects in the future.
		                        		
		                        		
		                        		
		                        	
8.Digital characteristics of brainstem morphology and age-related development in young children
Yanan LIU ; Xing WANG ; Kun LI ; Ruifen SUN ; Xueying MA ; Lei ZHAO ; Yuhang LIU ; Yang YANG ; Yunteng HAO ; Ziyu LI ; Shaojie ZHANG ; Zhijun LI
Chinese Journal of Tissue Engineering Research 2024;28(11):1730-1736
		                        		
		                        			
		                        			BACKGROUND:Previous brain studies have mostly focused on adults and fetuses,and the developmental characteristics of young children's brainstems have rarely been studied. OBJECTIVE:To observe the brainstem development characteristics of healthy young children and to explore the age-related differences and their correlation with sex. METHODS:From January 2019 to April 2022,a retrospective study of 3.0T MRI images of 174 children aged 2 to 6 years in the Affiliated Hospital of Inner Mongolia Medical University was conducted,and the median sagittal diameter,area and angle of the brainstem(including midbrain,pons and medulla oblongata)were measured. RESULTS AND CONCLUSION:There is an age-related increase in the anterior and posterior diameters of the midbrain,pons and medulla oblongata in the 2-5 years old group as well as in the longitudinal diameter and area of the midbrain,pons and medulla oblongata in the 2-6 years old group.Except for the longitudinal diameter of the medulla oblongata,all others show a positive correlation with age(r>0,P<0.05).In the 2-3 years old group and 4-5 years old group,the children are in the rapid growth and development stage,and these two age groups can be used as the key observation indicators for the development of young children.The anterior-posterior diameter,longitudinal diameter,area of the pons and total brainstem area are strongly correlated with age,which can be used as the key observation indicators for the brainstem development in young children.
		                        		
		                        		
		                        		
		                        	
9.Characteristics and significance of age-related changes in cervical uncinate process-related angle
Dezhou ZHANG ; Chaoqun WANG ; Jun SHI ; Kun LI ; Shaojie ZHANG ; Yuan MA ; Erfei HOU ; Danyang ZHAO ; Yunteng HAO ; Simin WANG ; Xiaohe LI ; Haiyan WANG ; Zhijun LI ; Xing WANG
Chinese Journal of Tissue Engineering Research 2024;28(36):5766-5772
		                        		
		                        			
		                        			BACKGROUND:As a unique structure of the cervical spine,the occurrence,development and progression of the uncovertebral joint directly affect the stability and range of motion of the cervical spine,and are also closely related to the pathogenesis of cervical spondylosis.A thorough understanding of the developmental characteristics of the uncovertebral joint is of great significance for the pathogenesis,diagnosis,and treatment of cervical spondylosis. OBJECTIVE:By using imaging and three-dimensional reconstruction technology to measure and observe the cervical uncinate process-related angle in a large sample of different age groups,the aim is to reveal the characteristics of its changes with age and vertebral growth,as well as its relationship with cervical spine stability. METHODS:Using a retrospective research design,we collected 1 447 cases of raw CT imaging data that meet the study requirements for complete cervical spine segments.The raw data were imported into Mimics 21.0 software in DICOM format for post-processing and measurement of angle of uncinate process and sagittal angle of uncinate process.The data were grouped based on gender,age,and side. RESULTS AND CONCLUSION:(1)With the increase of vertebral sequence,the angle of uncinate process increased in a V-shaped shape,and the lowest peak was at C5.The overall population showed a sharp peak with the increase of age,and the peak value mostly occurred in the age range of 30-39 years.(2)The sagittal angle of the uncinate process increased like a fishhook with the increase of the vertebral sequence,and the overall angle of the uncinate process increased with age,and the peak value mostly occurred in the age range of 20-29 years.The uncinate process angle and sagittal angle showed only partial significant differences between sides and genders(P<0.05).(3)It is concluded that the angle of the uncinate process increased with the increase of vertebral sequence in a V-shaped manner.The sagittal angle of the uncinate process increases like a fish hook with increasing vertebral order,while the two angles generally peak with increasing age.The angle of the uncinate process is about 131°,which may be closely related to the stability of the cervical spine,while the sagittal angle of the uncinate process is about 14°,and its function may play a certain role in limiting the excessive rotation of the cervical spine.
		                        		
		                        		
		                        		
		                        	
10.Arthroscopic all-inside reconstruction of isolated posterior cruciate ligament injury
Jian XIAO ; Hao LI ; Jun YAN ; Fan HU ; Ce WANG ; Gengyan XING
Chinese Journal of Orthopaedics 2024;44(3):139-145
		                        		
		                        			
		                        			Objective:To investigate the indications and effects of arthroscopic all-inside reconstruction in the treatment of isolated posterior cruciate ligament (PCL) injury.Methods:A retrospective analysis was performed on 47 patients with isolated PCL injury, who underwent arthroscopic all-inside reconstruction in the Third Medical Center of the PLA General Hospital from January 2016 to January 2020. There were 39 males and 8 females, aged 27.14±7.70 years old (range 16-40 years old). The preoperative kneeling-position stress X-ray showed that the degree of tibial posterior displacement was 8-10 mm, which was a complete and isolated Grade II PCL injury. The tibial and femoral tunnels were created through posterior-medial, anteromedial, and anterolateral portals, while the lateral portal to the medial femoral condyle was enlarged to position the tibial tunnel and protect the anterior cruciate ligament. The autologous graft tendon was pulled through the femoral and tibial tunnels secured with an adjustable loop plate. The efficacy was evaluated by evaluating and comparing preoperative and postoperative Lachman test, posterior drawer test, knee range of motion and relaxation, pain visual analogue scale (VAS) and Lysholm score.Results:43 patients were followed up for 35.21±3.88 months (range 12-40 months). The symptoms of knee instability all improved after surgery. At the follow-up of 1 year after surgery, 41 (95%) and 40 (93%) patients showed normal or I-degree laxity in Lachman test and posterior drawer test, respectively. The active range of motion and passive flexion of the knee joint were increased to 90°-110° and 110°-130°, respectively. The Lysholm score was 86.44±4.08 at the first year of follow-up and 90.12±3.33 at the last follow-up with significant difference compared with pre-operations ( P<0.05). The VAS score was 2.07±0.94 at the first year of follow-up and 1.28±0.83 at the last follow-up with significant difference compared with pre-operations ( P<0.05). The Lysholm score and VAS were 90.12±3.33 and 1.28±0.83, which were significantly improved compared to 1-year-follow-up ( P<0.05). Conclusion:Routine kneeling stress X-rays can evaluate the degree of tibial posterior displacement in isolated PCL injuries. With tibial posterior displacement equal to or greater than 10 mm, surgical reconstruction was required. All-inside reconstruction of isolated PCL injury was a safe and minimally invasive surgery to improve symptoms and restore knee functions.
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail