1.Material basis and action mechanism of drug-containing serum of Modified Erxian Pill inhibiting macrophage pyroptosis
Siyuan LI ; Yuru WANG ; Ye XU ; Di GUO ; Nan NAN ; Yang LIU ; Jie ZHAO ; Huiqin HAO
Chinese Journal of Tissue Engineering Research 2025;29(19):4029-4037
BACKGROUND:Our previous study found that Modified Erxian Pill could alleviate inflammation in collagen-induced arthritis rats,but its mechanism needs to be further verified. OBJECTIVE:To analyze the components absorbed in the blood of Modified Erxian Pill,and observe the effect of the drug-containing serum of Modified Erxian Pill on pyroptosis of J774A.1 macrophages. METHODS:(1)Analysis of components absorbed in the blood of Modified Erxian Pill:Ultra-high performance liquid chromatography-high resolution mass spectrometry was used to detect and identify Modified Erxian Pill and its components absorbed in the blood.(2)Effect of the drug-containing serum of Modified Erxian Pill on pyroptosis of J774A.1 macrophages:Molecular docking technology was used to initially verify the sesquiterpenoids and NLRP3 in components absorbed in the blood of Modified Erxian Pill.J774A.1 macrophages were randomly divided into blank control group,lipopolysaccharide+adenosine triphosphate group,and lipopolysaccharide+adenosine triphosphate+Modified Erxian Pill with low(2.5%),medium(5%),and high(10%)dose groups.The release of lactate dehydrogenase in the cell supernatant of each group was detected according to the kit instructions.The levels of interleukin-1β and interleukin-18 in cell supernatant were detected in each group by ELISA.The cell membrane damage was detected by Hoechst/PI staining.The expression levels of NLRP3,Caspase-1,GSDMD,and GSDMD-N protein in the cells of each group were detected by western blot assay. RESULTS AND CONCLUSION:(1)A total of 32 active components of Modified Erxian Pill were identified,and 21 components entered the blood.The main components into blood included a variety of sesquiterpenoids.(2)Molecular docking results showed that 3-O-Acetyl-13-deoxyphomenone,Incensol oxide,Atractylenolide III,Rupestonic acid,and 3,7-Dihydroxy-9,11-eremophiladien-8-one had good binding activity with NLRP3.(3)Compared with the blank control group,lactate dehydrogenase activity and the expression levels of interleukin-1β and interleukin-18 were significantly increased in cell supernatant of lipopolysaccharide+adenosine triphosphate group(P<0.001).Hoechst/PI staining showed that the number of PI-positive cells was significantly increased.After the intervention of lipopolysaccharide+adenosine triphosphate+Modified Erxian Pill group,all of them showed different degrees of reduction.(4)Compared with the blank control group,NLRP3,Caspase-1,GSDMD,and GSDMD-N protein expression levels were significantly increased in the lipopolysaccharide+adenosine triphosphate group(P<0.05).Compared with lipopolysaccharide+adenosine triphosphate group,the protein expressions of NLRP3,Caspase-1,GSDMD,and GSDMD-N were significantly decreased in the lipopolysaccharide+adenosine triphosphate+Modified Erxian Pill group(P<0.05),and had a certain dose dependence.These findings verify that the drug-containing serum of Modified Erxian Pill may inhibit the pyroptosis of J774A.1 macrophages by regulating the NLRP3/Caspase-1/GSDMD pathway.
2.An Amphibians-Derived Protein Provides Novel Biotherapeutics for Various Wounds Treatment
Hao-Ran CHEN ; Nan ZHOU ; Yu-Da LIU ; Li-Hua PENG
Biomolecules & Therapeutics 2025;33(2):399-407
Acute burns and chronic wounds frequently fail to heal owing to various reasons. Most drugs currently used for wound therapy in clinical practice have notable drawbacks, making their application a substantial concern. For instance, anti-inflammatory drugs can exert multisystem toxicity, and cellular therapies are costly and difficult to retain. In recent years, natural functional proteins derived from animals and plants have gained increasing attention owing to their unique biological activities, low cost, and broad application prospects in wound therapy. Herein, we isolated a new protein (JH015Y) from amphibians and demonstrated its excellent wound repair and regeneration properties compared with those of epidermal growth factor, both in vitro and in vivo. JH015 protein increased the proliferative ability of human keratinocytes and skin fibroblasts by 47.73 and 41.40%, respectively. In vivo, the medium-dose (0.5 mg/dose) groups of JH015Y protein demonstrated accelerated wound healing from day 4, with wound healing rates 1.26, 1.27, and 1.14 times that of the blank group in acute wounds, burn wounds, and diabetic ulcer, respectively. Histological analysis of Masson-stained sections indicated that the JH015Y protein contributed to collagen deposition on the wound surface, markedly reduced inflammatory cell infiltration, and exhibited low biological toxicity. Accordingly, the JH015Y protein is a promising biotherapeutic agent for accelerated wound repair and regeneration.
3.An Amphibians-Derived Protein Provides Novel Biotherapeutics for Various Wounds Treatment
Hao-Ran CHEN ; Nan ZHOU ; Yu-Da LIU ; Li-Hua PENG
Biomolecules & Therapeutics 2025;33(2):399-407
Acute burns and chronic wounds frequently fail to heal owing to various reasons. Most drugs currently used for wound therapy in clinical practice have notable drawbacks, making their application a substantial concern. For instance, anti-inflammatory drugs can exert multisystem toxicity, and cellular therapies are costly and difficult to retain. In recent years, natural functional proteins derived from animals and plants have gained increasing attention owing to their unique biological activities, low cost, and broad application prospects in wound therapy. Herein, we isolated a new protein (JH015Y) from amphibians and demonstrated its excellent wound repair and regeneration properties compared with those of epidermal growth factor, both in vitro and in vivo. JH015 protein increased the proliferative ability of human keratinocytes and skin fibroblasts by 47.73 and 41.40%, respectively. In vivo, the medium-dose (0.5 mg/dose) groups of JH015Y protein demonstrated accelerated wound healing from day 4, with wound healing rates 1.26, 1.27, and 1.14 times that of the blank group in acute wounds, burn wounds, and diabetic ulcer, respectively. Histological analysis of Masson-stained sections indicated that the JH015Y protein contributed to collagen deposition on the wound surface, markedly reduced inflammatory cell infiltration, and exhibited low biological toxicity. Accordingly, the JH015Y protein is a promising biotherapeutic agent for accelerated wound repair and regeneration.
4.An Amphibians-Derived Protein Provides Novel Biotherapeutics for Various Wounds Treatment
Hao-Ran CHEN ; Nan ZHOU ; Yu-Da LIU ; Li-Hua PENG
Biomolecules & Therapeutics 2025;33(2):399-407
Acute burns and chronic wounds frequently fail to heal owing to various reasons. Most drugs currently used for wound therapy in clinical practice have notable drawbacks, making their application a substantial concern. For instance, anti-inflammatory drugs can exert multisystem toxicity, and cellular therapies are costly and difficult to retain. In recent years, natural functional proteins derived from animals and plants have gained increasing attention owing to their unique biological activities, low cost, and broad application prospects in wound therapy. Herein, we isolated a new protein (JH015Y) from amphibians and demonstrated its excellent wound repair and regeneration properties compared with those of epidermal growth factor, both in vitro and in vivo. JH015 protein increased the proliferative ability of human keratinocytes and skin fibroblasts by 47.73 and 41.40%, respectively. In vivo, the medium-dose (0.5 mg/dose) groups of JH015Y protein demonstrated accelerated wound healing from day 4, with wound healing rates 1.26, 1.27, and 1.14 times that of the blank group in acute wounds, burn wounds, and diabetic ulcer, respectively. Histological analysis of Masson-stained sections indicated that the JH015Y protein contributed to collagen deposition on the wound surface, markedly reduced inflammatory cell infiltration, and exhibited low biological toxicity. Accordingly, the JH015Y protein is a promising biotherapeutic agent for accelerated wound repair and regeneration.
5.Preparation,characterization and tissue distribution of polyethylene glycol-modified Curcumin solid lipid nanoparticle inhalable micropowder
Nan LI ; Zi WANG ; Di HAO ; Lingyu KONG ; Xu LI
China Pharmacy 2025;36(19):2387-2392
OBJECTIVE To prepare polyethylene glycol (PEG)-modified flower lactose (FL) loaded Curcumin (Cur) solid lipid nanoparticle (SLN) inhalable micropowder (referred to as “PEG-Cur-FL”). METHODS PEG-Cur-FL was prepared by the solvent emulsification diffusion low-temperature solidification method, and its encapsulation efficiency, drug loading capacity, powder properties, aerodynamic particle size, in vitro deposition properties, and in vitro release characteristics were characterized. The mice were divided into Cur-SLN-FL (unmodified with PEG) group and PEG-Cur-FL group, with 55 mice in each group. Both groups of mice were given a single inhalation of 5 mg/kg (calculated as Cur) of the corresponding drug micropowder through an air tube. At 0.25, 0.5, 1, 2, 4, 6, 8, 12, 24, 48 and 72 hours after administration, eyeballs were removed to collect blood and tracheal, lung, liver and kidney tissues were separated. The mass concentration of Cur in mouse plasma and various tissue samples was measured, and the tissue distribution and retention of the drug were analyzed. RESULTS The encapsulation efficiency and drug loading capacity of PEG-Cur-FL were (86.2±1.8)% and (4.2±0.2)%, respectively; the bulk density and tap density were (0.24±0.01) g/cm3 and (0.30±0.01) g/cm3, respectively; the aerodynamic particle size was (2.74±0.64) μm; the in vitro effective site deposition rate (secondary drug deposition rate) was (45.07±2.79)%. Compared with Cur raw materials, Cur-SLN- FL and PEG-Cur-FL had sustained release effects under both leakage and non-leakage conditions, and PEG-Cur-FL had a smoother sustained release in artificial lung fluid, with release characteristics consistent with the Weibull model. The results of in vivo distribution showed that the drug concentration in the lung tissue of PEG-Cur-FL group was significantly lower than that of Cur- SLN-FL group during the same period after 1 hour of administration, while the drug concentration in the lung tissue at 4 to 48 hours was significantly higher than that of Cur-SLN-FL group during the same period (P<0.05); the plasma drug concentrations of the PEG-Cur-FL group at all time points from 0.25 to 12 hours were significantly lower than those of the Cur-SLN-FL group during the same period (P<0.05), and the drug concentrations in liver and kidney tissues were also lower than those of the Cur-SLN-FL group during the same period (P<0.05). CONCLUSIONS PEG-Cur-FL is prepared successfully; the inhalable micropowder has good inhalability and release performance; after administration through the trachea, the effective concentration of Cur in lung tissue can be increased, while reducing its plasma drug concentration and drug distribution concentration in non-target organs.
6.Advances in Salmonella -mediated targeted tumor therapy
Zhao-rui LÜ ; Dong-yi LI ; Yu-yang ZHU ; He-qi HUANG ; Hao-nan LI ; Zi-chun HUA
Acta Pharmaceutica Sinica 2024;59(1):17-24
italic>Salmonella has emerged as a promising tumor-targeting strategy in recent years due to its good tumor targeting ability and certain safety. In order to further optimize its therapeutic effect, scientists have tried to modify
7.Superior vena cava syndrome and pulmonary artery stenosis in a patient with lung metastases of bladder cancer
Jian-Ke LI ; Ya-Nan GU ; Jun-Hao LI ; Liang-Wen WANG ; Ning-Zi TIAN ; Wei CHEN ; Xiao-Lin WANG ; Yi CHEN
Fudan University Journal of Medical Sciences 2024;51(2):277-279,284
Superior vena cava syndrome(SVCS)is a group of clinical syndromes caused by obstruction of the superior vena cava and its major branches from various causes.Pulmonary artery stenosis(PS)is a complication of lung cancer or mediastinal tumours.SVCS combined with PS due to pulmonary metastases from bladder cancer is extremely rare and has not been reported in the literature.Here we reported an old male patient with pulmonary metastases from bladder cancer presenting with swelling of the head,neck and both upper limbs.SVCS combined with PS was clarified by pulmonary artery computed tomography angiography(CTA)and digital subtraction angiography(DSA).Endovascular stenting was used to treat SVCS.Angiography also showed that PS had not caused pulmonary hypertension and did not need to be treated.The swelling of the patient's head,neck and upper limbs was gradually reduced after the procedure.
8.Pachymaran regulates pyroptosis of liver cancer cells via SQLE/NLRP3/GSDMD signaling pathway
Ying YANG ; Yuan CAO ; Jiao ZHAO ; Zheng LI ; Qun WANG ; Hao GAO ; Xiaofei SUN ; Mingdian YUAN ; Nan SONG
Chinese Journal of Pathophysiology 2024;40(3):444-455
AIM:Using bioinformatics analysis and experiment validation to explore the differential expres-sion genes related to abnormal lipid metabolism in hepatocellular carcinoma(HCC)and the molecular mechanism of pachymaran affecting pyroptosis through squalene epoxidase(SQLE)/nucleotide-binding oligomerization domain-like re-ceptor protein 3(NLRP3)/gasdermin D(GSDMD)signaling pathway.METHODS:(1)The GEO,GSEA,DAVID,STRING and GEPIA databases were employed to screen abnormal lipid metabolism-related differentially expressed genes in HCC.(2)The tumor tissues from HCC patients(n=9)were collected to verify the differential expression of SQLE.(3)The inhibitory effect of pachymaran on the viability of human HCC cell line HepG2 was measured by CCK-8 assay.(4)The HepG2 cells were divided into control group and pachymaran(800 mg/L)group.The cell migration was analyzed by wound-healing assay,and RT-qPCR was used to measure SQLE mRNA expression.(5)The HepG2 cells with overexpres-sion of SQLE(OE-SQLE)were divided into 5 groups as follows:control group,overexpression negative control(OE-NC)group,OE-SQLE group,OE-NC+pachymaran group,and OE-SQLE+pachymaran group.The mRNA and protein expres-sion levels of SQLE and pyroptosis-related factors were determined by RT-qPCR and Western blot.Colorimetric method and ELISA were used to measure lactate dehydrogenase(LDH),interleukin-1β(IL-1β)and IL-18 levels.The necrosis of HepG2 cells was analyzed by flow cytometry.RESULTS:The SQLE gene was screened through bioinformatics analysis,and its mRNA expression was significantly increased in tumor tissues from HCC patients(P<0.01).In cell experiments,treatment with 800 mg/L pachymaran for 48 h had a significant inhibitory effect on HepG2 cell viability,and the expres-sion of SQLE mRNA was reduced(P<0.01).After overexpression of SQLE,the mRNA and protein levels of pyroptosis-re-lated factors,necrotic rate,and LDH,IL-1β and IL-18 levels were significantly decreased(P<0.05).After treatment with pachymaran,the above indicators were significantly increased(P<0.05).CONCLUSION:The SQLE is abnormal-ly highly expressed in HCC,and pachymaran can affect the growth of HCC cells by activating the NLRP3/GSDMD pyropto-sis pathway through SQLE.
9.Expert consensus on the diagnosis and treatment of osteoporotic proximal humeral fracture with integrated traditional Chinese and Western medicine (version 2024)
Xiao CHEN ; Hao ZHANG ; Man WANG ; Guangchao WANG ; Jin CUI ; Wencai ZHANG ; Fengjin ZHOU ; Qiang YANG ; Guohui LIU ; Zhongmin SHI ; Lili YANG ; Zhiwei WANG ; Guixin SUN ; Biao CHENG ; Ming CAI ; Haodong LIN ; Hongxing SHEN ; Hao SHEN ; Yunfei ZHANG ; Fuxin WEI ; Feng NIU ; Chao FANG ; Huiwen CHEN ; Shaojun SONG ; Yong WANG ; Jun LIN ; Yuhai MA ; Wei CHEN ; Nan CHEN ; Zhiyong HOU ; Xin WANG ; Aiyuan WANG ; Zhen GENG ; Kainan LI ; Dongliang WANG ; Fanfu FANG ; Jiacan SU
Chinese Journal of Trauma 2024;40(3):193-205
Osteoporotic proximal humeral fracture (OPHF) is one of the common osteoporotic fractures in the aged, with an incidence only lower than vertebral compression fracture, hip fracture, and distal radius fracture. OPHF, secondary to osteoporosis and characterized by poor bone quality, comminuted fracture pattern, slow healing, and severely impaired shoulder joint function, poses a big challenge to the current clinical diagnosis and treatment. In the field of diagnosis, treatment, and rehabilitation of OPHF, traditional Chinese and Western medicine have accumulated rich experience and evidence from evidence-based medicine and achieved favorable outcomes. However, there is still a lack of guidance from a relevant consensus as to how to integrate the advantages of the two medical systems and achieve the integrated diagnosis and treatment. To promote the diagnosis and treatment of OPHF with integrated traditional Chinese and Western medicine, relevant experts from Orthopedic Expert Committee of Geriatric Branch of Chinese Association of Gerontology and Geriatrics, Youth Osteoporosis Group of Orthopedic Branch of Chinese Medical Association, Osteoporosis Group of Orthopedic Surgeon Branch of Chinese Medical Doctor Association, and Osteoporosis Committee of Shanghai Association of Integrated Traditional Chinese and Western Medicine have been organized to formulate Expert consensus on the diagnosis and treatment of osteoporotic proximal humeral fracture with integrated traditional Chinese and Western medicine ( version 2024) by searching related literatures and based on the evidences from evidence-based medicine. This consensus consists of 13 recommendations about the diagnosis, treatment and rehabilitation of OPHF with integrated traditional Chinese medicine and Western medicine, aimed at standardizing, systematizing, and personalizing the diagnosis and treatment of OPHF with integrated traditional Chinse and Western medicine to improve the patients ′ function.
10.Application of precision radiotherapy in the treatment of hepatocellular carcinoma
Shuai HAO ; Xiaohui CAO ; Nan LI ; Ming LIU
Chinese Journal of Radiation Oncology 2024;33(3):256-262
With the development of radiotherapy technology, the role of radiotherapy in the treatment of primary liver cancer has been gradually recognized. In recent years, precision radiotherapy for hepatocellular carcinoma has become a research hotspot. A number of clinical trials have shown that precision radiotherapy can significantly improve clinical prognosis of patients with hepatocellular carcinoma. In this article, the research progress and existing problems of radiotherapy in the treatment of hepatocellular carcinoma were reviewed, aiming to provide literature support for the application of radiotherapy in the treatment of hepatocellular carcinoma.

Result Analysis
Print
Save
E-mail